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Abstract. Consider the population model with infinite size associated to subcritical
continuous-state branching processes (CSBP). We study the ancestral lineages as time
goes to the past and show that the flow of ancestral lineages, properly renormalized, con-
verges almost surely to the inverse of a drift-free subordinator whose Laplace exponent
is explicit in terms of the branching mechanism. The inverse subordinator is partitioning
the current population into ancestral families with distinct common ancestors. When
Grey’s condition is satisfied, the population comes from a discrete set of ancestors and
the ancestral families have i.i.d. sizes distributed according to the quasi-stationary dis-
tribution of the CSBP conditioned on non-extinction. When Grey’s condition is not
satisfied, the population comes from a continuum of ancestors which is described as the
set of increase points S of the limiting inverse subordinator. The proof is based on a gen-
eral result for stochastically monotone processes of independent interest, which relates
θ-invariant measures and θ-invariant functions for a process and its Siegmund dual.

1. Introduction

Continuous-state branching processes (CSBPs) are positive Markov processes satisfying
the branching property. They arise as scaling limits of Galton-Watson processes and
form a fundamental class of random population models. Their longterm behaviour has
received a great deal of attention since the seventies. We refer for instance to the early
works of Bingham [Bin76] and Grey [Gre74]. In the seminal work [BLG00], Bertoin and
Le Gall showed how to encode a complete genealogy of a random branching population
by considering a flow of subordinators (Xs,t(x), s ≤ t, x ≥ 0). In this setting, for any
x ∈ (0,∞), the process (Xt(x), t ≥ 0) := (X0,t(x), t ≥ 0) is a CSBP started from x,
viewed as the size of the progeny of all individuals lying in the interval (0, x) at time 0.

The initial value x being arbitrarily large, the population in the flow of subordinators
representation has an infinite size at all times and all individuals have arbitrarily old
ancestors. More precisely, individuals at time s with descendants at time t > s are the
locations of the jumps of the subordinator x 7→ Xs,t(x) and the descendants at time t of
the individuals in the population at time s are represented by the jump intervals. We
shall provide more background on the flow of subordinators in the sequel.
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Most works on CSBPs focus on their long-term behaviour forward in time. We refer to
Bertoin et al. [BFM08], Duquesne and Labbé [DL14], Labbé [Lab14] and Foucart and Ma
[FM19] for studies in the framework of the flow of subordinators. In this article, we are
interested in the backward genealogy of the continuous population and how it behaves on
the long-term. To the best of our knowledge, fewer works on CSBPs have been done in
this direction. We refer however to the works of Lambert [Lam03], Lambert and Popovic
[LP13], Johnston and Lambert [JL21+] and Foucart et al. [FMM19]. The representation
of the population model through (Xs,t(x), s ≤ t, x ≥ 0) allows one to follow the ancestral
lineages backward in time. The work [FMM19] initiates the study of the inverse flow

(X̂s,t(x), s ≤ t, x ≥ 0) defined for s ≤ t and x ∈ (0,∞), as

(1.1) X̂s,t(x) := inf{y ≥ 0 : X−t,−s(y) > x}.

This random variable represents the ancestor at time −t of the individual x in the popula-
tion at time −s. From now on, we consider an arrow of time pointing to the past, and call
X̂t(x) := X̂0,t(x), the ancestor at time t ≥ 0 (backwards) of the individual x of the pop-

ulation at time 0. The two-parameter flow (X̂t(x), t ≥ 0, x ≥ 0) is therefore representing

the ancestral lineages of the individuals in the current population. We call (X̂t(x), t ≥ 0)
the ancestral lineage process. This is a Feller process with no positive jumps. Moreover,
for any x 6= y, whenever (X̂t(x), t ≥ 0) and (X̂t(y), t ≥ 0) meet, they coalesce and such a
coalescence represents the occurrence in the past of a common ancestor of the individuals
x and y. We refer to [FMM19] for a study of the coalescent processes embedded in the

flow (X̂t(x), t ≥ 0, x ≥ 0).

For any fixed x ∈ (0,∞), the Markov processes (X̂t(x), t ≥ 0) and (Xt(x), t ≥ 0) are
linked through a duality relationship, called Siegmund duality, of the following form: for
any t ≥ 0 and x, y ∈ (0,∞)

(1.2) P
(
X̂t(x) < y

)
= P

(
x < Xt(y)

)
.

We refer to Siegmund [Sie76] and Clifford and Sudbury [CS85] for a general study of the
duality (1.2). See [FMM19, Equation (3.5), Section 3] for the case of CSBPs.

We wish to mention that Siegmund dual processes of discrete branching Markov pro-
cesses have been already studied by Asmussen and Sigman [AS96, Example 9], Li et al.
[LPLG08] and more recently by Pakes [Pak17]. However no mention was made in these
works about the genealogical interpretation of the Siegmund duals and their almost sure
renormalisation. Besides the fact that our study lies in the continuous state space setting,
one of the main contribution of this article will be to provide a genealogical interpretation
of the Siegmund duals and their limits.

We focus in this article on subcritical CSBPs. In such a setting, it has been shown in
[FMM19] that for all x ∈ (0,∞), the Markov process (X̂t(x), t ≥ 0) is transient. The

main aim of this article is to obtain an almost sure renormalisation of the inverse flow X̂
of all subcritical CSBPs, including those with no quasi-stationary distributions, namely
those for which Grey’s condition does not hold, see Section 2. The limit process is the
inverse of a certain subordinator with an explicit Laplace exponent. Last but not least,
we establish that this inverse subordinator is partitioning the current population into
ancestral families with distinct common ancestors.
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The paper is organised as follows. Further background on CSBPs and their representa-
tion in terms of flow of subordinators are provided in Section 2. Fundamental properties
of the ancestral lineage process (X̂t(x), t ≥ 0), such as its Siegmund duality relation with
the CSBP (Xt(x), t ≥ 0) and the representation of its semigroup, are also recalled. Our
main results are stated in Section 3 and proven in Section 4. The proof is based on a
general result, established in Theorem 4.1, for stochastically monotone Markov processes
by showing how to link (infinite) θ-invariant measures of a process (Xt, t ≥ 0) with (in-

creasing) θ-invariant functions of its Siegmund dual process (X̂t, t ≥ 0). We apply this
result in the setting of CSBPs.

2. Background on CSBPs and the flow of subordinators

We first recall basic definitions and properties of CSBPs and their representation in
terms of flows. These processes are continuous time and continuous space analogue of
Galton-Watson Markov chains. They have been introduced by Lamperti [Lam67] and
Jǐrina [Jǐr58]. CSBPs are positive Markov processes satisfying the branching property:
for any x, y ≥ 0 and fixed time t ≥ 0,

(2.3) Xt(x+ y) = X ′t(x) +X ′′t (y),

where (Xt(x+y), t ≥ 0) is a CSBP started from x+y, and (X ′t(x), t ≥ 0) and (X ′′t (y), t ≥ 0)
are two independent copies of the process started respectively from x and y. We refer the
reader to [Li11, Chapter 3] for an introduction to CSBPs. Denote by L the generator of
(Xt(x), t ≥ 0). For any q ≥ 0, set eq(x) := e−qx for any x ≥ 0. The operator L acts on
the exponential functions as follows. For all q, x ≥ 0,

(2.4) Leq(x) = Ψ(q)xeq(x),

where Ψ is a Lévy-Khintchine function and is called the branching mechanism. We refer
e.g. to Silverstein [Sil68]. The linear span of exponential functions A := Span({eq, q ∈
[0,∞)}) is a core for generator L.

We shall merely be interested in subcritical CSBPs for which Ψ is of the form

(2.5) Ψ(u) =
σ2

2
u2 + γu+

∫ ∞
0

(e−ux − 1 + ux)π(dx) for all u ≥ 0,

where γ = Ψ′(0+) > 0, σ ≥ 0, and π is a Lévy measure, i.e. a Borel measure such that∫∞
0

(x ∧ x2)π(dx) < ∞. We assume that either π 6= 0 or σ > 0, so that Ψ is not linear.
The semigroup of (Xt(x), t ≥ 0) satisfies for any λ ∈ (0,∞), t ≥ 0 and x ∈ [0,∞)

(2.6) E[e−λXt(x)] = e−xvt(λ),

with for any λ ∈ (0,∞), t 7→ vt(λ) defined as the solution to the integral equation

(2.7)

∫ λ

vt(λ)

du

Ψ(u)
= t.

Note that t 7→ vt(λ) solves d
dt
vt(λ) = −Ψ(vt(λ)) with v0(λ) = λ. As a first consequence

of (2.6), the process (Xt(x), t ≥ 0) is extinct at time t with probability e−xvt(∞) where
vt(∞) := lim

λ→∞
vt(λ) ∈ (0,∞]. The latter is finite if and only if Ψ satisfies Grey’s condition

(2.8)

∫ ∞ du

Ψ(u)
<∞.
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Lambert [Lam07] and Li [Li00] have studied the subcritical CSBP (Xt(x), t ≥ 0) con-
ditioned on non-extinction and established the following weak convergence when (2.8)
holds:

P(Xt(x) ∈ · |Xt(x) > 0) −→
t→∞

ν∞(·),

where ν∞, the so-called quasi-stationary distribution of the CSBP, has Laplace transform

(2.9)

∫ ∞
0

e−qxν∞(dx) = 1− κ∞(q) := 1− e−Ψ′(0+)
∫∞
q

du
Ψ(u) , q ≥ 0.

An interesting phenomenon for CSBPs is that when Grey’s condition (2.8) does not hold,
the latters are persistent in the sense that although subcritical, they are not getting
absorbed at 0, but are decreasing towards 0 while keeping positive mass at all times. In
particular, no quasi-stationary distributions exist in this setting.

The branching property (2.3) can be translated in terms of independence and stationar-
ity of the increments of the process (Xt(x), x ≥ 0) for any fixed time t. The latter is there-
fore a subordinator and according to (2.6), its Laplace exponent is λ 7→ vt(λ). Starting
from this observation, Bertoin and Le Gall in [BLG00] showed that a complete population
model can be associated to CSBPs through a flow of subordinators (Xs,t(x), s ≤ t, x ≥ 0).

More precisely, the collection of processes (Xs,t(x), s ≤ t, x ≥ 0) is satisfying the fol-
lowing properties:

(1) For every s ≤ t, x 7→ Xs,t(x) is a càdlàg subordinator with Laplace exponent
λ 7→ vt−s(λ).

(2) For every t ∈ R, (Xr,s, r ≤ s ≤ t) and (Xr,s, t ≤ r ≤ s) are independent.
(3) For every r ≤ s ≤ t, Xr,t = Xs,t ◦Xr,s a.s..

The two-parameter flow (Xt(x), x ≥ 0, t ≥ 0) := (X0,t(x), x ≥ 0, t ≥ 0) is a flow of CSBPs
with branching mechanism Ψ, each starting from an initial population of arbitrarily large
size x. The three-parameter flow above provides a complete genealogy of the underlying
(infinite) population: let y ∈ (0,∞), if Xs,t(y−) < Xs,t(y), then the individual y at time
s has descendants at time t and those are represented by the interval

(
Xs,t(y−), Xs,t(y)

)
;

see Figure 1.

y

Xs,t(y−)

Xs,t(y)

x 7→ Xs,t(x)

Figure 1. Schematic representation of the genealogy forward in time
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We will now always work on the probability space on which the flow of subordinators
(Xs,t(x), s ≤ t, x ≥ 0) and thus the inverse flow (X̂s,t(x), t ≥ s, x ≥ 0), see (1.1), are de-
fined. We stress that the statements below hold true with general branching mechanisms,
including those that are not subcritical. We shall explicitely mentioned the condition
Ψ′(0+) > 0 when this is needed. Similarly as for the forward flow, we summarize here
fundamental properties of the inverse flow, see [FMM19, Section 3]

(1) For every t ≥ s, x 7→ X̂s,t(x) is a càdlàg inverse subordinator.

(2) For every t ∈ R, (X̂r,s, r ≤ s ≤ t) and (X̂r,s, t ≤ r ≤ s) are independent.

(3) For all r ≤ s ≤ t, X̂r,t = X̂s,t ◦ X̂s,r a.s..

The ancestral lineage process, defined as

(X̂t(x), t ≥ 0) := (X̂0,t(x), t ≥ 0),

is a non-explosive càdlàg Feller process with no positive jumps, namely for all x ∈ (0,∞),

T̂∞ := inf{t > 0 : X̂t(x) = ∞} = ∞ a.s. and P
(

supt>0(X̂t(x) − X̂t−(x)) > 0
)

= 0.

Property (3) entails that the flow of processes
(
X̂t(x), t ≥ 0, x ∈ (0,∞)

)
is coalescing, in

the sense that, when two ancestral lineages (X̂t(x), t ≥ 0) and (X̂t(y), t ≥ 0) meet, they
merge. Such a coalescence represents the occurrence in the past of a common ancestor
of the individuals x and y. We refer the reader to [FMM19, Section 5.2] for a study of

coalescent processes embedded in the flow (X̂s,t, s ≤ t). The next theorem characterizes

the semigroup of (X̂t, t ≥ 0). We denote it by (Qt, t ≥ 0).

Theorem 2.1 (Theorem 3.5, Proposition 3.6 in [FMM19]). For any continuous function
f defined on (0,∞) and any q > 0,

(2.10) E[Qtf(eq)] = E[f(evt(q))],

where for any λ ∈ (0,∞), eλ is an exponential random variable with parameter λ. The

process X̂ admits an entrance boundary at 0+ if and only if (2.8) is satisfied.

When (2.8) holds, the process started from 0, (X̂t(0+), t ≥ 0), is defined at any time

as X̂t(0+) := lim
x↓0

X̂t(x) a.s.. This corresponds to the first individual at generation t

backwards in time, with descendants at time 0.

We now establish that X̂ satisfies some properties of regularity. For x, y ∈ (0,∞), set

(2.11) T̂y := inf{t > 0 : X̂t(x) > y} = inf{t > 0 : X̂t(x) = y}.

We shall sometimes write T̂y = T̂ xy to emphasize on the initial state x of the process.

Lemma 2.2 (Regularity). If −Ψ is not the Laplace exponent of a subordinator, i.e.

Ψ(u) ≥ 0 for some u > 0, then the process X̂ is regular on (0,∞), namely for any x < y,

Px(T̂y <∞) > 0.

Proof. Let x, y ∈ (0,∞), for any t > 0, Px(T̂y < t) ≥ P
(
X̂t(x) > y

)
= P

(
x > Xt(y)

)
.

By assumption, −Ψ is not the Laplace exponent of a subordinator, this ensures that the
CSBP is not almost surely non-decreasing, see e.g. [Bin76, page 220], and that the event

{Xt(y) −→
t→∞

0} has positive probability. Hence, Px(T̂y < ∞) ≥ lim
t→∞

P
(
x > Xt(y)

)
≥

P(Xt(y) −→
t→∞

0) > 0. 2
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In the subcritical case, for which Ψ′(0+) = γ > 0, one has lim
t→∞

vt(λ) = 0 and all families

forward in time are getting extinct. As mentioned in the introduction, in this case the
ancestral lineages are transient.

Proposition 2.3 (Proposition 3.8 in [FMM19]). Assume Ψ′(0+) > 0. For any x ∈
(0,∞), the ancestral lineage process (X̂t(x), t ≥ 0) is transient, i.e. X̂t(x) −→

t→∞
∞ a.s.

The following versions of Siegmund duality relationships will be more convenient to
work with in the sequel. They will allow us to apply a general result, Theorem 4.1, about
invariant functions and invariant measures for a given process and its Siegmund dual.

Lemma 2.4. For any t ≥ 0 and x, y ∈ (0,∞)

(2.12) {X̂t(x) > y} = {x > X−t,0(y)} almost surely,

and

(2.13) P
(
X̂t(x) > y

)
= P

(
x > Xt(y)

)
.

Remark 2.5. We stress here on the strict inequalities in (2.13). This form of duality is
actually the one used by Siegmund in his fundamental article [Sie76].

Proof. Let t ≥ 0 and x, y ∈ (0,∞). We establish that {X̂t(x) ≤ y} = {x ≤ Xt(y)}
almost surely. Note that this is equivalent to (2.12). According to [FMM19, Lemma

3.3-(1), Section 3], {X̂t(x) < y} = {x < Xt(y)} almost surely, therefore we only need to

focus on the events {X̂t(x) = y} and {Xt(y) = x}. Recall the definition of X̂t(x) in (1.1),

{X̂t(x) = y} = {X−t,0(y−) ≤ x < X−t,0(y)} ∪ {X−t,0(y−) = X−t,0(y) = x}.
Since X−t,0 is a subordinator, it has no almost sure fixed discontinuities and the event
{X−t,0(y−) < X−t,0(y)} for fixed y has probability 0. Thus

{X̂t(x) = y} = {X−t,0(y) = x} a.s,

and (2.12) is established. Since X−t,0(y) has the same law as Xt(y),

P(X̂t(x) = y) = P(X−t,0(y) = x) = P(Xt(y) = x),

and the identity (2.13) holds. 2

3. Results

Assume that the branching mechanism Ψ is subcritical, namely Ψ′(0+) > 0. For any
λ ∈ (0,∞), define the map on [0,∞):

(3.14) κλ : θ 7→ e−Ψ′(0+)
∫ λ
θ

du
Ψ(u) .

We shall see that κλ is the Laplace exponent of a drift-free subordinator, namely it takes
the form κλ(θ) =

∫∞
0

(1 − e−θx)νλ(dx), for any θ ≥ 0, where νλ is a Lévy measure, i.e.

a Borel measure on (0,∞) such that
∫∞

0
(1 ∧ x)νλ(dx) < ∞. The latter is finite when

κλ(∞) <∞. This occurs if and only if Grey’s condition holds,
∫∞ du

Ψ(u)
<∞, see (2.8). In

this case, the function κ∞ defined in (2.9), is the Laplace exponent of a compound Poisson
process with jump law ν∞, the quasi-stationary distribution of the Ψ-CSBP conditioned
on non-extinction.
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Theorem 3.1. Assume Ψ′(0+) > 0. Fix λ ∈ (0,∞). Then, almost surely

vt(λ)X̂t(x) −→
t→∞

Ŵ λ(x), for all x /∈ Jλ := {x > 0 : Ŵ λ(x) > Ŵ λ(x−)},

where the process Ŵ λ has càdlàg paths and its right-inverse process W λ, defined for any
y ≥ 0 by

W λ(y) := inf{x ≥ 0 : Ŵ λ(x) > y},
is a drift-free subordinator with Laplace exponent κλ defined in (3.14). In addition, the
following dichotomy holds:

i) If
∫∞ du

Ψ(u)
<∞, then for any λ ∈ (0,∞] the process (Ŵ λ(x), x ≥ 0) has piecewise

constant sample paths almost surely.
ii) If

∫∞ du
Ψ(u)

=∞, then for any λ ∈ (0,∞) the process (Ŵ λ(x), x ≥ 0) has continu-

ous sample paths almost surely.

Remark 3.2. In case i), since the Lévy measure νλ is finite, (Ŵ λ(x), x ≥ 0) is the inverse
of a compound Poisson process with Laplace exponent κλ. It is natural to choose λ =∞
in which case the following almost-sure convergence holds

vt(∞)X̂t(x) −→
t→∞

Ŵ∞(x) for all x /∈ J∞,

where (Ŵ∞(x), x ≥ 0) is the inverse of a compound Poisson process with Laplace exponent
κ∞, whose Lévy measure is the quasi-stationary law of the CSBP. In case ii), one cannot
take λ =∞, since when Grey’s condition does not hold, vt(∞) =∞ for all t ≥ 0.

Recall π the Lévy measure in the Lévy-Khintchine form (2.5) of Ψ. The following

corollary shows that the ancestral lineage process (X̂t(x), t ≥ 0) has an exponential growth
when the measure π satisfies an L logL condition.

Corollary 3.3. For any λ > 0, vt(λ) ∼
t→∞

cλe
−Ψ′(0+)t for some constant cλ > 0 if and

only if
∫∞

1
u log uπ(du) <∞. Moreover, under this latter condition, almost surely

e−Ψ′(0+)tX̂t(x) −→
t→∞

Ŵ (x), for all x /∈ J := {x > 0 : Ŵ (x) > Ŵ (x−)},

where Ŵ is the inverse of a subordinator W with Laplace exponent

κ : θ ∈ [0,∞) 7→ θe
−Ψ′(0+)

∫ θ
0

(
1

Ψ′(0+)u
− 1

Ψ(u)

)
du
.

Remark 3.4. Corollary 3.3 is reminiscent to results for supercritical CSBPs with an L logL
moment, which have an exponential growth when they are not getting extinct, see [Gre74]
and e.g. [Li11, Chapter 3].

Example 3.5. Let γ > 0. Consider the subcritical Neveu CSBP whose branching mech-
anism is defined by Ψ(u) := γ(u + 1) log(u + 1) for all u ≥ 0. Note that Ψ′(0+) = γ > 0

and
∫∞ du

Ψ(u)
= ∞. By Corollary 3.3, almost surely e−γtX̂t(x) −→

t→∞
Ŵ (x) for all x ≥ 0,

where Ŵ is the inverse of a subordinator W with Laplace exponent

κ(θ) = γ log(1 + θ) =

∫ ∞
0

(1− e−θx)γ e
−x

x
dx.

The limiting process Ŵ is therefore an inverse Gamma subordinator.
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The next observation ensures that the choice of the parameter λ is arbitrary in both
cases i) and ii) in the sense that a change in λ only affects the limit by a multiplicative
factor.

Lemma 3.6. For any λ′ 6= λ ∈ (0,∞) and x ∈ (0,∞),

Ŵ λ′(x) = cλ′,λŴ
λ(x) almost surely, with cλ′,λ = eΨ′(0+)

∫ λ′
λ

du
Ψ(u) .

The process (Ŵ λ(x), x ≥ 0) can be interpreted as follows. Define a random equivalence
relation A on (0,∞) via

x
A∼ y if and only if Ŵ λ(x) = Ŵ λ(y).

This induces a random partition3 of the set (0,∞) into open intervals of constancy of Ŵ λ.
A simple application of Lemma 3.6 ensures that this partition does not depend on λ. By
definition, the subintervals of the partition A are made of individuals whose ancestral
lineages have the same asymptotic behaviour. These subintervals correspond to the jump
intervals of W λ, the subordinator obtained as the right-inverse of Ŵ λ, that is to say

A =
{(
W λ(x−),W λ(x)

)
;x > 0

}
a.s.

In other words the families in A are separated by points xi, i ∈ I, in the support S of
the associated Stieltjes measure dŴ λ, S := {W λ(x) : x ≥ 0}.

The next theorem states that A corresponds actually to the families of current indi-
viduals having a common ancestor.

Theorem 3.7. For any x, y ∈ (0,∞),

x
A∼ y if and only if X̂t(x) = X̂t(y) for some t ≥ 0.

Theorem 3.1 and Theorem 3.7 complete the results obtained under Grey’s condition, in
Foucart et al. [FMM19, Sections 3, 4 and 5.3], on the long-term behaviour of the ancestral
lineages, as well as on the representation of the ancestral partition when Grey’s condition
is not in force. As stated in Theorem 3.1, there are two separate cases to treat according
whether Grey’s condition holds or not.

When
∫∞ du

Ψ(u)
< ∞ (Grey’s condition), the process (Ŵ λ(x), x ≥ 0) is the inverse of a

compound Poisson process for any λ ∈ (0,∞]. By taking λ =∞, the latter has for jump
measure the probability law ν∞ and the partition A is thus constituted of i.i.d. families
with lengths of law ν∞, i.e. A takes the form of a consecutive partition into intervals:

A =
(
(0, x1), (x1, x2), . . .

)
a.s.,

where (xi, i ≥ 1) is a random renewal process with jump law ν∞. The following figure

provides a schematic representation of the families, their lineages and the process Ŵ∞,
under Grey’s condition.

When
∫∞ du

Ψ(u)
=∞, the description is more involved since the process (Ŵ λ(x), x ≥ 0)

has singular continuous paths and any fixed subinterval of (0,∞) of finite length contains
infinitely many small families with positive probability. Recall that S is the support of
the random singular measure dŴ λ.

3up to a negligible set
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X̂t(0+) ∼ Ŵ∞(0)/vt(∞)

time 0

x1

x2

X̂t(x2) ∼ Ŵ∞(x2)/vt(∞)

X̂t(x1) ∼ Ŵ∞(x1)/vt(∞)

x3

x1

Ŵ∞(0)

x2

Ŵ∞(x1)

Ŵ∞(x2)

x3

Figure 2. Schematic representation of ancestral families under Grey’s condition

When Ψ is not the branching mechanism of the subcritical Feller diffusion, i.e. π 6≡ 0,
coalescences between the ancestral lineages inside each family are possibly multiple and
can be described using the notion of consecutive coalescents, see [FMM19, Section 5].

Proposition 3.8. Set Ψ′(∞) := lim
u→∞

Ψ(u)
u
∈ (0,∞]. For any x > 0, the Hausdorff

dimension of S ∩ [0, x] is

(3.15) dimH(S ∩ [0, x]) =
Ψ′(0+)

Ψ′(∞)
∈ [0, 1) a.s.

From (2.5), one sees that Ψ′(∞) = σ2

2
· ∞ + γ +

∫∞
0
xπ(dx) ∈ (0,∞]. In the case

of a CSBP with unbounded variation, namely with σ > 0 or
∫ 1

0
xπ(dx) = ∞, one has

Ψ′(∞) = ∞ and the Hausdorff dimension of S is zero. In the bounded variation case,
(3.15) can be rewritten as

dimH(S ∩ [0, x]) =
γ

γ +
∫∞

0
hπ(dh)

a.s.

Remark 3.9. If one denotes by PPPλ :=
∑

i∈I δ(aλi ,∆
λ
i ) the Poisson point process associated

to the subordinator W λ, the atoms (∆λ
i , i ∈ I) are by definition the sizes of the different

families in A and the atoms of jump times (aλi , i ∈ I) are related to the rate of escape of the
ancestral lineages and can be thought as some ancestral types. Let ε > 0. The restriction
of PPPλ to the set (0,∞)× (ε,∞) takes the form PPPλ|(0,∞)×(ε,∞) =

∑∞
j=1 δ(eεj ,D

ε
j)

, where

(eεj, j ≥ 1) is a sequence of i.i.d. exponential random variables with parameter ν̄λ(ε) :=

νλ
(
(ε,∞)

)
and (Dε

j, j ≥ 0) are i.i.d. random variables with law νλ(dx)
ν̄λ(ε)

1(ε,∞)(x). The

exponential random variables allow one to distinguish families between each others. If
e
ε
i is larger than e

ε
j, then the ancestral lineage of the jth family with size larger than

ε, diverges slower than that of the ith. Note that when Grey’s condition holds, the
characteristic measure of the Poisson point process PPPλ is finite and one can take ε = 0.
When Grey’s condition fails, one needs first to restrict ourselves to families of size greater
than ε > 0 in order to be able to rank the atoms of times of PPPλ. In the schematic
representation given in Figure 2, the divergence of the ancestral lineage of the family
(x2, x3) is faster than those of (x1, x2) and (0, x1).

Example 3.10. Let Ψ be the branching mechanism with drift γ = 1 and Lévy measure
π(dx) = x−α−1e−xdx with α ∈ (0, 2). Then by a Tauberian theorem, see e.g. Feller’s book
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[Fel71, Chapter XIII.5],

Ψ(x)

x
∼

x→∞

∫ ∞
0

(1− e−xh)hπ̄(h)dh ∼
x→∞

cαx
α−1,

where for all h > 0, π̄(h) := π((h,∞)) and cα is a strictly positive constant.

i) If α ∈ (1, 2), then
∫∞ du

Ψ(u)
<∞, hence Ψ′(∞) =∞, and

S is a discrete set, thus dimH(S ∩ [0, x]) = 0 a.s. for all x > 0.

ii) If α = 1 (Neveu case), then
∫∞ du

Ψ(u)
=∞ and Ψ′(∞) =∞, hence

S is not a discrete set, but dimH(S ∩ [0, x]) = 0 a.s. for all x > 0.

iii) If α < 1, Ψ′(∞) <∞, hence
∫∞ du

Ψ(u)
=∞ and

S is not a discrete set, and dimH(S ∩ [0, x]) = 1
1+Γ(1−α)

a.s. for all x > 0.

In general, inverse subordinators do not have the Markov property. The joint density of
the finite-dimensional marginals of (Ŵ λ(x), x ≥ 0) are thus rather involved. We refer to
the works of Lageras [Lag05] and Veillette and Taqqu [VT10] for information on inverse
subordinators.

The following proposition is a side result on the one-dimensional laws of the limiting
process (Ŵ λ(x), x ≥ 0). Recall that νλ denotes the Lévy measure of the subordinator
(W λ(x), x ≥ 0) and ν̄λ is its tail: for any x ≥ 0, ν̄λ(x) := νλ

(
(x,∞)

)
.

Proposition 3.11. The law of Ŵ λ(x) admits the density gλx defined on (0,∞) by

(3.16) gλx(u) :=

∫ x

0

ν̄λ(x− z)P(W λ(u) ∈ dz).

When
∫∞ du

Ψ(u)
<∞, Ŵ∞(x) has density g∞x :

(3.17) g∞x (u) := e−u
∞∑
n=0

un

n!

∫ x

0

ν̄∞(x− z)ν?n∞ (dz).

4. Proofs

The most demanding part in the proof of Theorem 3.1 lies in the almost-sure conver-
gence. The convergence in law will be established from a direct argument involving the
subordinators (X−t,0(x), x ≥ 0) rather than their inverse, we refer to the forthcoming
Lemma 4.14. In order to show the almost-sure convergence, we first establish a general
result of independent interest relating θ-invariant functions of stochastically monotone
processes, with θ-invariant measures of their dual processes, see Section 4.1. We then
apply this result in the setting of CSBPs. The asymptotics of a certain θ-invariant func-
tion for the dual process X̂ is studied. It enables to find a new martingale associated
to the ancestral lineage process. We shall see how the renormalisation vt(λ) appears in

this martingale and deduce the almost sure convergence of the process (vt(λ)X̂t(x), t ≥ 0)
started from a fixed value x, see Lemma 4.10. We study the associated limiting process
in x and show that it satisfies the properties stated in Theorem 3.1, see Lemma 4.11.

Theorem 3.7 will be established with the help of some previous results obtained in
[FMM19]. Proposition 3.8 will be a consequence of Theorem 3.1. The proof of Theorem 3.1
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is divided into several lemmas. The first are needed to show the almost sure convergence
towards some positive random variable Ŵ λ(x).

4.1. Invariant functions of stochastically monotone Markov processes. In this
section, we consider a “general” standard Markov process X := (Xt, t ≥ 0) with state
space [0,∞), and denote by (Xt(y), t ≥ 0) the process started from y ∈ [0,∞). Recall
that the process X is said to be stochastically monotone if for any t ≥ 0 and x ∈ [0,∞),
the map y 7→ P(Xt(y) ≥ x) is non-decreasing. Siegmund [Sie76] has established that if
the process X is stochastically monotone, non-explosive or with boundary ∞ absorbing,
and that for any fixed t and z, the map y 7→ P(Xt(y) ≥ z) is right-continuous then there

exists a unique Markov process X̂, the so-called Siegmund dual process, such that for any
t and x, y

(4.18) P(Xt(y) ≥ x) = P(X̂t(x) ≤ y).

The latter identity can be rewritten as

(4.19) P
(
X̂t(x) > y

)
= P

(
x > Xt(y)

)
.

Our first result shows how to find fundamental martingales for the Siegmund dual process
(X̂t(x), t ≥ 0) of any stochastically monotone Markov process (Xt(x), t ≥ 0). Recall T̂y
defined in (2.11).

Theorem 4.1 (Invariant functions of X̂). Let (Pt, t ≥ 0) be the semigroup of the process
(Xt, t ≥ 0). Let θ ∈ R. If µθ is a positive Borel measure on (0,∞) satisfying for any
t ≥ 0, µθPt = eθtµθ, then the functions x 7→ µθ([0, x)) and x 7→ µθ((x,∞)), provided they
are well-defined, are θ-invariant functions, namely functions fθ such that for any t ≥ 0
and x ∈ [0,∞),

E[fθ(X̂t(x))] = eθtfθ(x),

so that

(4.20)
(
e−θtfθ(X̂t(x)), t ≥ 0

)
is a martingale.

In particular, if the process (X̂t, t ≥ 0) has no positive jumps and µθ is finite on [0, x)
for all x > 0, then fθ : x 7→ µθ([0, x)) is a well-defined increasing and left-continuous
function, and for all y ≥ x ≥ 0,

(4.21) Ex[e−θT̂y ] =
µθ([0, x))

µθ([0, y))
.

Remark 4.2. A measure µθ satisfying µθPt = eθtµθ is sometimes called an eigen-measure
or a θ-invariant measure.

Remark 4.3. Let L be the generator of the process (Xt, t ≥ 0). The Kolmogorov forward
equation entails that the condition µθPt = eθtµθ for all t ≥ 0, is equivalent to µθL = θµθ
where µθL is by definition the measure such that 〈µθL, f〉 :=

∫
Lf(x)µθ(dx) for any

function f ∈ C2
b ((0,∞)).
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Proof. Set fθ(x) = µθ([0, x)) for all x > 0. For any x ∈ (0,∞) and any t ≥ 0,

P̂tfθ(x) = E
[
fθ
(
X̂t(x)

)]
= E

[∫
1{X̂t(x)>y}µθ(dy)

]
= E

[∫
1{x>Xt(y)}µθ(dy)

]
by the duality relation (4.19)

= µθPt
(
[0, x)

)
= eθtµθ

(
[0, x)

)
= eθtfθ(x).

The martingale property (4.20) follows readily from the Markov property. Note that the
map fθ : x 7→ µθ([0, x)) is left-continuous. We now apply the bounded optional stopping

time theorem at time t ∧ T̂y:

E
[
e−θt∧T̂yfθ

(
X̂t∧T̂y(x)

)]
= fθ(x).

Since fθ is non-decreasing and X̂t∧T̂y(x) ≤ y a.s, one has for any t ≥ 0, fθ
(
X̂t∧T̂y(x)

)
≤

fθ(y). On the event {T̂y <∞}, the left-continuity of fθ and the absence of negative jumps

in the process (X̂t, t ≥ 0) ensure that fθ
(
X̂t∧T̂y(x)

)
−→
t→∞

fθ(y). This yields

fθ(x) = lim
t→∞

E
[
e−θt∧T̂yfθ

(
X̂t∧T̂y(x)

)]
= E

[
e−θT̂yfθ(y)1{T̂y<∞}

]
,

which provides the identity (4.21). 2

Remark 4.4. Theorem 4.1 holds in general for any stochastically monotone Markov pro-
cess. In particular, the process is not required to have one-sided jumps. The state space
[0,∞] could also be replaced by a more general nice ordered state space.

Remark 4.5. Let L̂ denote the generator of the process X̂. An invariant function fθ for the
semigroup of X̂ can be thought as a solution to the equation L̂fθ = θfθ. However, when
the process has jumps, L̂ is an integro-differential operator and no general theory allows
one for identifying solutions of this equation. Lemma 4.1 reveals that for stochastically
monotone processes finding a θ-invariant function corresponds to finding a θ-invariant
measure for the dual process. This is reminiscent to a result of Cox and Rösler [CR84].

4.2. Application to CSBPs and proof of Theorem 3.1. Recall the definition of
(X̂t(x), t ≥ 0) as the right-continuous inverse of (X−t,0(x), t ≥ 0), Lemma 2.4 and the
duality relation (2.13). This relationship matches with (4.19) and we will be able to
apply Theorem 4.1.

Recall the action (2.4) of the generator L on exponential functions. We now look for
the θ-invariant measures µθ in our setting and their Laplace transforms explicitly in terms
of Ψ. The following Lemma holds for general branching mechanism (i.e not necessarily
subcritical).

Lemma 4.6. For any θ > 0, the map cθ : q 7→ e−θ
∫ q
1

du
Ψ(u) is the Laplace transform of a

Borel measure µθ on [0,∞). Moreover, the measure µθ is θ-invariant for the semigroup
(Pt, t ≥ 0) of the CSBP (Xt, t ≥ 0).

Proof. Recall that L denotes the generator of the CSBP (Xt(x), t ≥ 0). Let θ ≥ 0. It is

easily checked from the expression of cθ that (−1)nc
(n)
θ ≥ 0 on (0,∞). Bernstein theorem,

see e.g. [Wid41, Theorem 12.b, page 161], guarantees that there exists a certain Borel
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measure µθ (possibly infinite) on [0,∞) such that cθ(q) =
∫

(0,∞)
e−qxµθ(dx) for all q > 0.

We now check that the measure µθ solves µθL = θµθ. Let q > 0, recall that λ > 0 is fixed.
Observe first that cθ satisfies the equation

(4.22) −Ψ(q)c′θ(q) = θcθ(q), cθ(1) = 1.

Recall eq : x 7→ e−qx for any x, q ≥ 0. Since the linear span of exponential functions is
a core for the generator L, it is enough to verify that

(4.23) 〈µθL, eq〉 :=

∫ ∞
0

Leq(x)µθ(dx) = 〈θµθ, eq〉 = θ

∫ ∞
0

e−qxµθ(dx).

One has on the other hand Leq(x) = Ψ(q)xeq(x) and (4.23) is equivalent to

(4.24) Ψ(q)

∫ ∞
0

xe−qxµθ(dx) = θ

∫ ∞
0

e−qxµθ(dx),

which holds true by using (4.22). 2

Remark 4.7. In the subcritical or critical cases, the map q 7→ cθ(q) is completely monotone
on (0,∞) and not defined at 0. This entails that the measure µθ is infinite. In the
supercritical case, cθ is completely monotone and well-defined and right-continuous at 0,
in this case the measure µθ is finite.

According to Theorem 4.1, the map fθ : x 7→ µθ([0, x)) is a θ-invariant function for

(X̂t, t ≥ 0). The following simple calculation provides an expression of the Laplace trans-
form of fθ. For any q > 0,

(4.25) ξθ(q) :=

∫ ∞
0

fθ(y)e−qydy =

∫ ∞
0

∫ ∞
0

1{u<y}e
−qyµθ(du)dy =

1

q
cθ(q).

Inverting ξθ in order to find fθ does not seem to be feasible in a general setting, however
we shall see in the next lemma that ξθ has regular variation properties at 0, Tauberian
theorems will then allow us to find an equivalent at∞ of the function fθ and hence enable
us to investigate more precisely the martingale (e−θtfθ(X̂t(x)), t ≥ 0).

Lemma 4.8. Assume Ψ′(0+) 6= 0. The map R : q 7→ e−
∫ q
1

du
Ψ(u) is regularly varying at 0

with index −1/Ψ′(0+). In particular it takes the form R(q) = q
− 1

Ψ′(0+)L1(1/q), where L1

is a slowly varying function at ∞. Moreover, for any θ > −Ψ′(0+),

(4.26) fθ(y) ∼
y→∞

y
θ

Ψ′(0+)
1

Γ
(

1 + θ
Ψ′(0+)

)L1(y)θ =
1

Γ
(

1 + θ
Ψ′(0+)

)R(1/y)θ.

Proof. For any q > 0,∫ 1

q

du

Ψ(u)
=

∫ 1

q

(
1

Ψ(u)
− 1

Ψ′(0+)u

)
du+

∫ 1

q

du

Ψ′(0+)u

=

∫ 1/q

1

(
1

u2Ψ(1/u)
− 1

Ψ′(0+)u

)
du− 1

Ψ′(0+)
log(q).
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Set ε(u) = 1
uΨ(1/u)

− 1
Ψ′(0+)

for u > 0 and notice that ε(u) −→
u→∞

0. One has

R(q) = q
− 1

Ψ′(0+) exp

(∫ 1/q

1

ε(u)

u
du

)
and by Karamata’s representation theorem, see e.g. Bingham et al. [BGT87, Theorem

1.3.1], we see that L1(x) := exp
(∫ x

1
ε(u)
u

du
)

is slowly varying at ∞. Recall cθ(q) =

e−θ
∫ q
1

du
Ψ(u) . By (4.25), ξθ : q 7→ cθ(q)

q
is regularly varying at 0 with index ρ = −1− θ

Ψ′(0+)
.

The Tauberian theorem with monotone density, see e.g. [Fel71, Chapter XIII.5, Theorem
4], provides (4.26). 2

From now on, we focus on the subcritical case Ψ′(0+) > 0. The two next lemmas are
shown by adapting arguments of Pakes [Pak17, Theorem 10] and Barbour [Bar75] to the
setting of the continuous-state space. The first one provides an almost sure limit theorem
for the first passage time above level y, T̂ xy , when y goes to ∞.

Lemma 4.9. For any x > 0, almost-surely

T̂ xy −
∫ 1

1/y

du

Ψ(u)
−→
y→∞

S(x),

where S(x) is a finite random variable with Laplace transform

(4.27) E[e−θS(x)] = Γ

(
1 +

θ

Ψ′(0+)

)
fθ(x) for all θ > −Ψ′(0+).

Proof. We establish first a convergence in law. By the asymptotic equivalence (4.26), for
any θ > −Ψ′(0+),

E[e−θ(T̂
x
y −
∫ 1
1/y

du
Ψ(u)

)] −→
y→∞

Γ

(
1 +

θ

Ψ′(0+)

)
fθ(x).

One obtains by applying a continuity theorem for the moment generating function, see
[Cur42, Theorem 3], that as y goes to ∞,

(4.28) T̂ xy −
∫ 1

1/y

du

Ψ(u)

L−→ S(x),

where S(x) has Laplace transform (4.27). We now show the almost sure convergence. Let
(yn, n ≥ 0) be an increasing sequence such that yn −→

n→∞
∞ and with y0 := x. Write

T̂ xyn −
∫ 1/x

1/yn

du

Ψ(u)
=

n∑
k=0

(
T̂ xyk+1

− T̂ xyk −
∫ 1/yk

1/yk+1

du

Ψ(u)

)
.

Since the Markov process X̂ has no positive jumps, the summands are independent and by
(4.28), the series on the right-hand side converges in law, one can apply [Chu68, Theorem
9.5.5], which ensures that the series actually converges almost-surely. We finally get that

T̂ xy −
∫ 1

1/y

du

Ψ(u)
−→
y→∞

S(x) a.s.

2
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We now deduce the convergence of the process (vt(λ)X̂t(x), t ≥ 0) for fixed x and a

representation of its limit Ŵ λ(x).

Lemma 4.10. Let λ > 0. For any x > 0, the following almost sure convergence holds:

(4.29) vt(λ)X̂t(x) −→
t→∞

Ŵ λ(x) := c(λ)e−Ψ′(0+)S(x),

where c(λ) is a constant independent of x.

Proof. We first establish the almost sure convergence towards some random variable
Ŵ λ(x). By applying Theorem 4.1, the process (e−tf1(X̂t(x)), t ≥ 0) is a positive mar-
tingale. Therefore, the latter converges almost surely towards some random variable

Z(x). Recall Lemma 4.8. Set β(1, λ) := λξ1(λ)
Γ(1+1/Ψ′(0+))

and Rλ(1/y) := exp
(∫ λ

1/y
du

Ψ(u)

)
=

exp
(∫ λ

1
du

Ψ(u)

)
R(1/y). Recall that X̂t(x) −→

t→∞
∞ a.s, see Proposition 2.3. By Lemma 4.8,

e−tf1

(
X̂t(x)

)
∼
t→∞

e−tβ(1, λ)Rλ

(
1/X̂t(x)

)
−→
t→∞

Z(x) a.s.

Hence

(4.30) Rλ

(
1/X̂t(x)

)
∼
t→∞

etZ(x)

β(1, λ)
.

Now, using the fact that Rλ is non-decreasing and regularly varying at 0 with index
− 1

Ψ′(0+)
, we see that R−1

λ is regularly varying at ∞ with index −Ψ′(0+). Taking R−1
λ in

the asymptotic equivalence (4.30) yields

1

X̂t(x)
∼
t→∞

R−1
λ

(
etZ(x)

β(1, λ)

)
∼
t→∞

(
Z(x)

β(1, λ)

)−Ψ′(0+)

R−1
λ (et).

By the definition of λ 7→ vt(λ), see (2.7), one has Rλ

(
vt(λ)

)
= et. This allows us to

conclude that

vt(λ)X̂t(x) −→
t→∞

Ŵ λ(x) :=
(
Z(x)/β(1, λ)

)Ψ′(0+)
a.s.

We now explain the relation between Ŵ λ(x) and the random variable S(x) introduced in

the previous lemma. Denote by (Ft)t≥0 the natural filtration of X̂. Let (Mt, t ≥ 0) be the
martingale defined by Mt := E[e−S(x)|Ft] for any t ≥ 0. Note that Mt −→

t→∞
e−S(x) almost

surely. Moreover by Lemma 4.9, and Lebesgue’s theorem, for any t ≥ 0,

Mt = lim
y→∞

E
[
e−(T̂xy −

∫ 1
1/y

du
Ψ(u))|Ft

]
.

For any fixed y, conditional on {T̂ xy > t}, we have that T̂ xy = T̂ xy ◦ θt + t with T̂ xy ◦ θt :=

inf{s > 0 : X̂s+t(x) > y}. By the Markov property, we get almost surely

E[e−T̂
x
y |Ft] =

f1

(
X̂t∧T̂xy (x)

)
f1(y)

e−t∧T̂
x
y .
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Therefore, almost surely

Mt = lim
y→∞

e
∫ 1
1/y

du
Ψ(u)

f1(y)
f1

(
X̂t∧T̂xy (x)

)
e−t∧T̂

x
y

= Γ

(
1 +

1

Ψ′(0+)

)
f1(X̂t(x))e−t.

Hence,

Z(x) := lim
t→∞

e−tf1(X̂t(x)) =
1

Γ
(

1 + 1
Ψ′(0+)

)e−S(x) > 0 a.s.,

and we have Ŵ λ(x) = c(λ)e−Ψ′(0+)S(x) a.s. 2

The almost sure convergence in Lemma 4.10 holds for fixed x. We now further investi-
gate the limiting process in the variable x and establish a stronger convergence.

Lemma 4.11. The process (Ŵ λ(x), x ≥ 0) admits a non-decreasing right-continuous

modification. Moreover, setting Jλ := {x > 0 : Ŵ λ(x) > Ŵ λ(x−)}, one has almost
surely,

(4.31) ∀x /∈ Jλ, vt(λ)X̂t(x) −→
t→∞

Ŵ λ(x).

Proof. For technical reasons it will be easier to establish the result first with a left-
continuous limiting random process instead of the targeted right-continuous one. Once a
version with left-continuous paths and right limits is constructed, one can easily consider
the associated right-continuous version of it. Recall that by Lemma 4.10, for any fixed x,
vt(λ)X̂t(x) converges almost surely as t goes to ∞ towards a random variable denoted by

Ŵ λ(x). Consider the almost sure event Ω1 on which all random variables (Ŵ λ(q), q ∈ Q+)

are defined. Since for any t ≥ 0, the process (X̂t(x), x ≥ 0) is non-decreasing then for any

rational numbers q′ ≥ q ≥ 0, one has Ŵ λ(q′) ≥ Ŵ λ(q). We work deterministically on Ω1

and define for all x ≥ 0,
˜̂
W λ(x) := lim

q↑x,
q∈Q+

Ŵ λ(q).

The process (
˜̂
W λ(x), x ≥ 0) is well-defined on Ω1 and we define it as the null process on

Ω \ Ω1. By construction, (
˜̂
W λ(x), x ≥ 0) is left-continuous. It has right limits since it

is non-decreasing. We now show that for any x ≥ 0, P(Ŵ λ(x) =
˜̂
W λ(x)) = 1. By the

identity (4.29), on the event Ω1, we have that for all q ∈ Q+ such that q < x

(4.32) Ŵ λ(q) = Ŵ λ(x)e−Ψ′(0+)(S(q)−S(x)) a.s.

We now verify that S(q) −→
q→x
q<x

S(x) a.s. Since almost surely for all x ≤ q ≤ q′, X̂t(x) ≤

X̂t(q) ≤ X̂t(q
′), then T̂ q

′
y ≤ T̂ qy ≤ T̂ xy and similarly, almost surely

S(q′) ≤ S(q) ≤ S(x).

Hence (S(q), q > 0) is decreasing. Recall the Laplace transform of S(q) given in (4.27),
since the function fθ : x 7→ µθ([0, x)) is left-continuous, we have that

E[e−θS(q)] −→
q→x
q<x

E[e−θS(x)].
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Finally we see that S(q) −→
q→x
q<x

S(x) a.s. and by the identity (4.32), Ŵ λ(q) −→
q↑x,q∈Q

Ŵ λ(x),

hence Ŵ λ(x) =
˜̂
W λ(x) a.s. and

˜̂
W λ is a left-continuous version of the family of random

variables (Ŵ λ(x), x ≥ 0). If we now define on Ω1, simultaneously for all x, the process

(Ŵ λ(x), x ≥ 0) by setting Ŵ λ(x) :=
˜̂
W λ(x+), then the process (Ŵ λ(x), x ≥ 0) is right-

continuous. The first statement of the lemma is established. It remains to see that the
almost sure pointwise convergence holds outside the set of jumps Jλ. Almost surely for
all x /∈ Jλ, one can choose two rational numbers q and q′ such that q′ < x < q. Since
X̂t(q

′) ≤ X̂t(x) ≤ X̂t(q) for all t, one has

˜̂
W λ(q′) ≤ lim inf

t→∞
vt(λ)X̂t(x) ≤ lim sup

t→∞
vt(λ)X̂t(x) ≤ ˜̂

W λ(q).

Since
˜̂
W λ has left-continuous paths with right limits and x /∈ Jλ, both sides of the

inequalities above converge towards the same value
˜̂
W λ(x) when q′ ↑ x and q ↓ x. By

definition of Ŵ λ(x), since x /∈ Jλ, Ŵ λ(x) =
˜̂
W λ(x). This allows us to claim (4.31). 2

From now on we work with the right-continuous version of Ŵ λ. The next lemma sheds
some light on the role of the parameter λ and provides Lemma 3.6.

Lemma 4.12. For any λ > 0 and λ′ > 0,

(4.33)
vt(λ)

vt(λ′)
−→
t→∞

cλ,λ′ := eΨ′(0+)
∫ λ
λ′

du
Ψ(u) .

Moreover Ŵ λ(x) = cλ,λ′Ŵ
λ′(x) for all x ∈ (0,∞) almost surely.

Proof. Since Ψ′(0+) ≥ 0, vt(λ) −→
t→∞

0. Moreover, lim
t→∞
↑ Ψ(vt(u))

vt(u)
= Ψ′(0+). Recall that

d
dλ
vt(λ) = Ψ(vt(λ))

Ψ(λ)
. Therefore for any λ 6= λ′,

vt(λ)

vt(λ′)
= exp

(∫ λ

λ′

d

du
log vt(u)du

)
= exp

(∫ λ

λ′

Ψ(vt(u))

vt(u)

du

Ψ(u)

)
and by monotone convergence vt(λ)

vt(λ′)
−→
t→∞

exp
(

Ψ′(0+)
∫ λ
λ′

du
Ψ(u)

)
. We see from Lemma 4.11

that Ŵ λ(x) = cλ,λ′Ŵ
λ′(x) for all x ∈ (0,∞) almost surely. 2

Lemma 4.13. The map κλ : q 7→ e−Ψ′(0+)
∫ λ
q

du
Ψ(u) is the Laplace exponent of a drift-free

subordinator W λ. Its Lévy measure, denoted by νλ, is finite if and only if
∫∞ du

Ψ(u)
<∞.

Proof. For any θ > 0 and any y ∈ (0,∞), since X−t,0(z) has the same law as X0,t(z) for
all z and t ≥ 0, one gets by (2.6) and by applying Lemma 4.12

(4.34) E[e
−θX−t,0

(
y

vt(λ)

)
] = e

−y vt(θ)
vt(λ) −→

t→∞
e−yκλ(θ).

At any time t, the process (X−t,0(y/vt(λ)), y ≥ 0) is a subordinator, the function κλ is
therefore the Laplace exponent of a certain subordinator (W λ(y), y ≥ 0). We show that

there is no drift in the subordinator. Recall Ψ′(∞) := lim
u→∞

Ψ(u)
u
∈ (0,∞]. Since the

case of linear branching mechanism is discarded, i.e Ψ(q) 6≡ bq, one has by convexity,
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Ψ′(∞) > Ψ′(0+). Choose δ ∈ (Ψ′(0+),Ψ′(∞)). There exists λ0 such that for all u ≥ λ0,
Ψ(u)
u
≥ δ and thus 1

Ψ(u)
≤ 1

δu
. Therefore

lim
θ→∞

∫ θ

λ0

(
1

Ψ′(0+)u
− 1

Ψ(u)

)
du ≥

∫ ∞
λ0

(
1

Ψ′(0+)
− 1

δ

)
du

u
=∞.

One deduces that

κλ(θ)

θ
=

1

λ
exp

(
−Ψ′(0+)

∫ θ

λ

(
1

Ψ′(0+)u
− 1

Ψ(u)

)
du

)
−→
θ→∞

0,

which entails that there is no drift. Letting θ to ∞ in κλ(θ), we see that

lim
θ→∞

κλ(θ) = νλ((0,∞)) = eΨ′(0+)
∫∞
λ

du
Ψ(u) ,

which is finite if and only if
∫∞ du

Ψ(u)
<∞. Therefore the Lévy measure νλ is finite if and

only if
∫∞ du

Ψ(u)
<∞. 2

Lemma 4.14. The process (Ŵ λ(x), x ≥ 0) has the same finite-dimensional law as

((W λ)−1(x), x ≥ 0),

where W λ is a càdlàg subordinator with Laplace exponent κλ and

(W λ)−1(x) := inf{y ≥ 0 : W λ(y) > x}.

Moreover, if
∫∞ du

Ψ(u)
=∞, then the process Ŵ λ has continuous paths almost surely.

Proof. By independence and stationarity of the increments of (X−t,0(y/vt(λ)), y ≥ 0), the
convergence in law of the one-dimensional marginal (X−t,0(y/vt(λ)), t ≥ 0) as t goes to
∞ towards W λ(y), established in (4.34), entails the convergence of the finite-dimensional
marginals. Since there is no drift part in the Laplace exponent κλ, the range of the
subordinator W λ contains almost surely no fixed point, see [Ber99, Proposition 1.9-(i)].
Hence for any x ∈ (0,∞) and y ∈ (0,∞), P(W λ(y) = x) = 0. The weak convergence
of the finite-dimensional marginals of (X−t,0(y/vt(λ), y ≥ 0) entails thus that for any
0 < y1 < . . . < yn and 0 < x1 < . . . < xn

lim
t→∞

P
(
X−t,0(y1/vt(λ)) ≥ x1, X−t,0(y2/vt(λ)) ≥ x2, . . . , X−t,0(yn/vt(λ)) ≥ xn

)
= P

(
W λ(y1) ≥ x1, W

λ(y2) ≥ x2, . . . ,W
λ(yn) ≥ xn

)
.

By applying Lemma 4.10, the definition of the flow (X̂t(x), x ≥ 0) and the duality relation
(2.12), one gets the following identities

P
(
Ŵ λ(x1) ≤ y1, Ŵ

λ(x2) ≤ y1, . . . , Ŵ
λ(xn) ≤ yn

)
(4.35)

= lim
t→∞

P
(
vt(λ)X̂t(x1) ≤ y1, vt(λ)X̂t(x2) ≤ y2, . . . , vt(λ)X̂t(xn) ≤ yn

)
= lim

t→∞
P
(
X−t,0(y1/vt(λ)) ≥ x1, X−t,0(y2/vt(λ)) ≥ x2, . . . , X−t,0(yn/vt(λ)) ≥ xn

)
= P

(
W λ(y1) ≥ x1, W

λ(y2) ≥ x2, . . . ,W
λ(yn) ≥ xn

)
= P

(
(W λ)−1(x1) ≤ y1, (W λ)−1(x2) ≤ y2, . . . , (W λ)−1(xn) ≤ yn

)
.
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The processes (W λ)−1 and Ŵ λ have therefore the same law. The fact that when
∫∞ du

Ψ(u)
=

∞, there are no jumps, i.e Jλ = ∅ a.s., comes from the fact that the process (W λ)−1 is
the inverse of a subordinator with an infinite Lévy measure. Since there is no drift in W λ,
the sample paths of Ŵ λ are pure singular continuous functions. 2

Proof of Theorem 3.1. The main theorem is obtained by combining Lemma 4.11,
Lemma 4.14 and Lemma 4.13. 2

Remark 4.15. When
∫∞ du

Ψ(u)
=∞, for any time t > 0, the subordinator (X−t,0(x), x ≥ 0)

has an infinite Lévy measure, the process (X̂t(x), x ≥ 0) is therefore continuous increasing.

Since its limit (Ŵ λ(x), x ≥ 0) is continuous, Dini’s theorems ensure that the almost sure
convergence (4.31) holds true locally uniformly.

Proof of Corollary 3.3. Recall the statement of Corollary 3.3. For any λ > 0, by (2.7),
one has for any time t,∫ λ

vt(λ)

(
1

Ψ′(0+)u
− 1

Ψ(u)

)
du =

1

Ψ′(0+)
log

(
λ

vt(λ)

)
− t =

1

Ψ′(0+)
log

(
λ

vt(λ)
e−Ψ′(0+)t

)
.

Recall that vt(λ) −→
t→∞

0. Therefore, the asymptotics vt(λ) ∼
t→∞

cλe
−Ψ′(0+)t holds for some

constant cλ > 0 if and only if

(4.36)

∫ λ

0

(
1

Ψ′(0+)u
− 1

Ψ(u)

)
du <∞.

One has, when (4.36) holds, cλ = λe
−Ψ′(0+)

∫ λ
0

(
1

Ψ′(0+)u
− 1

Ψ(u)

)
du

. Since Ψ(u) ∼
u→0

Ψ′(0+)u, the

convergence (4.36) is equivalent to
∫ λ

0

(
Ψ(u)−γu

u2

)
du <∞, where we recall that γ = Ψ′(0+)

is the linear drift in Ψ, see (2.5). Simple calculations from the Lévy-Khintchine form (2.5)
ensure that the latter integral converges if and only if

∫∞
u log uπ(du) <∞. We refer for

instance to the calculations around Proposition 3.14 in [Li11]. By Theorem 3.1, almost
surely for all x /∈ Jλ,

e−Ψ′(0+)tX̂t(x) −→
t→∞

1

cλ
Ŵ λ(x).

The process ( 1
cλ
Ŵ λ(x), x ≥ 0) is the inverse of the subordinator (W λ(cλx), x ≥ 0), whose

Laplace exponent is θ 7→ cλκλ(θ). Recall κλ, one easily checks that

cλκλ(θ) = λe
−Ψ′(0+)

[∫ λ
0

(
1

Ψ′(0+)u
− 1

Ψ(u)

)
du−

∫ θ
λ

du
Ψ(u)

]
= θe

−Ψ′(0+)
∫ θ
0

(
1

Ψ′(0+)u
− 1

Ψ(u)

)
du
.

2

4.3. Proof of Theorem 3.7. We establish now that the random partition A matches
with the ancestral partition. The proof relies on discretizations of the current popula-
tion along the sequence of jumps times of a Poisson process, see [FMM19, Section 5.2].
Consider a Poisson point process P on R+ × R+ with intensity the Lebesgue measure
on R+ × R+. Let µ > 0 and (Jµj , j ≥ 1) be the sequence of atoms (i.e. of jump times)
of the homogeneous Poisson process (P([0, µ] × [0, x]), x ≥ 0). Note that all jump times
of (P([0, µ] × [0, x]), x ≥ 0) are jump times of (P([0, µ′] × [0, x]), x ≥ 0) when µ′ > µ.
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Therefore the sequence (Jµ
′

j , j ≥ 1) is thinner than (Jµj , j ≥ 1). Moreover the set of all
jump times of P , M := {Jµi , i ≥ 1, µ > 0}, is almost surely an everywhere dense subset
of [0,∞). One samples now individuals in the current population along the sequence
(Jµi , i ≥ 1) for a fixed µ. Let i 6= j ∈ N. We first establish that the individuals Jµi and

Jµj have the same ancestors if and only if Jµi
A∼ Jµj i.e. Ŵ λ(Jµi ) = Ŵ λ(Jµj ). The first

implication is obvious since by definition of Ŵ λ, if X̂t(J
µ
i ) = X̂t(J

µ
j ) for some t ≥ 0, then

Ŵ λ(Jµi ) = Ŵ λ(Jµj ). Denote by (Cµ(t), t ≥ 0) the process defined as follows

i
Cµ(t)∼ j if and only if X̂t(J

µ
i ) = X̂t(J

µ
j ) for any i, j ∈ N?.

According to [FMM19, Proposition 4.18] and its proof, the process (Cµ(t), t ≥ 0), called
consecutive coalescent in [FMM19], admits an almost-sure limit Cµ(∞) and for any fixed

integers i and j, i
Cµ(∞)∼ j if and only if there exists a time ti,j > 0 such that for all t ≥ ti,j,

i
Cµ(t)∼ j. To establish the other implication, we will show that Cµ(∞) = A µ where A µ is

defined as follows:

i
A µ

∼ j if and only if Ŵ λ(Jµi ) = Ŵ λ(Jµj ).

Clearly all blocks of Cµ(∞) are sub-blocks of A µ. It is thus sufficient to show that the
blocks of A µ have lengths of the same law as those of Cµ(∞). Recall κλ. By [FMM19,
Lemma 5.8], blocks sizes of A µ are i.i.d. with generating function given by,

E[z#A µ
1 ] = 1− κλ(µ(1− z))

κλ(µ)
, for all z ∈ (0, 1).

Simple calculations from the expression of κλ, see (3.14), entail that E[z#A µ
1 ] = 1 −

e−Ψ′(0+)
∫ µ
µ(1−z)

du
Ψ(u) . Applying [FMM19, Proposition 5.18], we see that E[z#A µ

1 ] = E[z#Cµ1 (∞)]
for any z ∈ (0, 1).

It remains to deduce that A is indeed the ancestral partition of the whole population.

If x
A∼ y and x 6= y, then there exists u > 0, such that x, y ∈

(
W λ(u−),W λ(u)

)
. By

density of the setM, one can find for some large enough µ, atoms Jµx , J
µ
y ∈M such that

W λ(u−) < Jµx < x and W λ(u) > Jµy > y.

By construction, the individuals Jµx and Jµy belongs to the same interval of A . We have

seen above that it entails that almost surely for large enough t ≥ 0, X̂t(J
µ
x ) = X̂t(J

µ
y ).

Hence all individuals in the interval (Jµx , J
µ
y ) have a common ancestor, including x and y.

This achieves the proof. 2

Proof of Proposition 3.8. Recall the statement of Proposition 3.8, where S denotes
the support of the random measure dŴ λ. By Lemma 4.12, Ŵ λ = cλ,λ′Ŵ

λ′ almost surely,
this entails that S does not depend on the parameter λ. Moreover, we see by Lemma
4.14 that S is the range of a subordinator W λ with Laplace exponent κλ. Having the
Laplace exponent of W λ at hand, one can directly apply known results on the geometry
of the range of a subordinator. By [Ber99, Corollary 5.3], for all x > 0, almost surely
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dimH(S ∩ [0, x]) = ind(κλ) with ind(κλ) := lim inf
q→∞

log κλ(q)
log q

. Recall κλ, one gets

ind(κλ) = lim inf
q→∞

Ψ′(0+)

log q

∫ q

λ

du

Ψ(u)
.

If Ψ′(∞) := lim
u→∞

Ψ(u)
u

< ∞, then we see that
∫ q
λ

du
Ψ(u)

∼
q→∞

1
Ψ′(∞)

log q and the result is

established. If now Ψ′(∞) =∞, then for any large D > 0, for large q,∫ q

λ

du

Ψ(u)
≤ Cλ +

log q

D
,

for some constant Cλ. We see therefore that ind(κλ) ≤ Ψ′(0+)
D

. Since D is arbitrarily large,

one can conclude that dimH(S ∩ [0, x]) = Ψ′(0+)
Ψ′(∞)

= 0 a.s. 2

We now establish Proposition 3.11 and look for the density of Ŵ λ(x) for fixed x.

Proof of Proposition 3.11. Let λ > 0 and θ > 0. Recall κλ and denote by eθ, eq
two independent exponential random variables with parameter θ and q respectively. By
Lemma 4.14, we have that P(W λ(eθ) ≥ eq) = P(eθ ≥ Ŵ λ(eq)), or equivalently

E[e−θŴ
λ(eq)] = 1− E[e−qW

λ(eθ)].

We deduce that∫ ∞
0

E[e−θŴ
λ(x)]e−qxdx =

1

q

(
1− E[e−κλ(q)eθ ]

)
=

1

q

(
1− θ

κλ(q) + θ

)
=

1

θ

κλ(q)

q

θ

κλ(q) + θ

=
1

θ

κλ(q)

q
E[e−κλ(q)eθ ] =

1

θ

∫ ∞
0

e−quν̄λ(u)du

∫ ∞
0

e−qzP(W λ(eθ) ∈ dz),

where we have used that

E[e−qW
λ(eθ)] = E[e−κλ(q)eθ ] and

κλ(q)

q
=

∫ ∞
0

e−quν̄λ(u)du.

By the change of variable x = u+ z, we obtain∫ ∞
0

E[e−θŴ
λ(x)]e−qxdx =

1

θ

∫ ∞
0

e−qx
∫ ∞

0

ν̄λ(x− z)P(W λ(eλ) ∈ dz),

and deduce that

E[e−θŴ
λ(x)] =

1

θ

∫ x

0

ν̄λ(x− z)P(W λ(eθ) ∈ dz)

=

∫ ∞
0

e−θu
∫ x

0

ν̄λ(x− z)P(W λ(u) ∈ dz)du.

Thus, the density of Ŵ λ(x) is gλx(u) :=
∫ x

0
ν̄λ(x−z)P(W λ(u) ∈ dz). In the case

∫∞ du
Ψ(u)

<

∞, (W∞(u), u ≥ 0) is a compound Poisson process with intensity ν∞, and since ν̄∞(0) = 1,
the formula (3.17) can be plainly checked. 2
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[DL14] Thomas Duquesne and Cyril Labbé, On the Eve property for CSBP, Electron. J. Probab. 19
(2014), no. 6, 31. 14

[Fel71] William Feller, An Introduction to Probability Theory and Its Applications. Vol. II, Second
edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971. 2

[FM19] Clément Foucart and Chunhua Ma, Continuous-state branching processes, extremal processes
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