Logistic CSBPs

Sketch of proofs

Hitting times, local time and excursion measure 00000000000

References 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Short-Course AMSS (C. Foucart)

Talk 3: Continuous-state branching processes with competition:

logistic CSBPs

Laplace duality and reflection at $\infty.$

Clément Foucart

Introduction

Imagine a random continuous population with the following dynamics:

- Each individual reproduces independently, with the same law (as in a continuous-state branching process (CSBP))
- At constant rate, two individuals are picked in the population, and one kills the other (quadratic competition).

The total size of the population, say $(Z_t, t \ge 0)$, is called **logistic** continuous-state branching process (Lambert 2005). Formally,

$$\mathrm{d}Z_t = \mathsf{CSBP} \; \mathsf{dynamics} - \frac{c}{2}Z_t^2 \mathrm{d}t.$$
 (1)

This is a random analogue of the **logistic function** introduced by Verhulst (1844) and solving:

$$\mathrm{d}z_t = \gamma z_t \mathrm{d}t - \frac{c}{2} z_t^2 \mathrm{d}t. \tag{2}$$

One can solve (2) explicitely. There is an equilibrium at $\frac{2\gamma}{c}$ and it can be started from ∞ .

▲ Competition destroys the branching property. The aim is to study these processes with general branching mechanisms, including those for which CSBPs explode in finite time.

Questions

- Are there strong enough reproduction laws to face the competition and explosion to occur? (∞ accessible.)
- If the process does not explode, is it possible to start it from infinity ? (∞ entrance.)
- If the process explodes, can we extend it after its first explosion time continuously or not? (∞ regular or exit.)
- **④** ...
 - (1) will be solved by arguments of "time-change",
 - (2) and (3) by "duality". We will find NAS conditions for ∞ to be regular and build an extended process (Z_t, t ≥ 0) with ∞ regular reflecting, namely s.t.

$$\lambda(\{t>0, Z_t=\infty\}) = 0 \text{ a.s.}$$

Logistic CSBPs

Hitting times, local time and excursion measure 00000000000

References 000

Feller's boundary classification

Consider a process valued in an interval (a, b) with $a < b \in [0, \infty]$,

Sketch of proofs

- the boundary *b* is **accessible** if the process enters into *b* with positive probability. If *b* is accessible, then
 - when the process cannot get out from *b*, the boundary *b* is said to be an **exit**

or

- when the process can get out from *b*, the boundary *b* is called a **regular** boundary.
- If the boundary *b* is **inaccessible**, then
 - when the process cannot get out from *b*, the boundary *b* is said to be **natural**

or

• when the process can get out from *b*, the boundary *b* is said to be an **entrance**.

In the case of a diffusion, integral tests for each possible boundary are known in terms of the scale function and speed measure, (Feller (1954)).

Introduction	Logistic CSBPs	Sketch of proofs	Hitting times, local time and excursion measure	References
0000				

When a boundary b is regular, the process after hitting b can be extended in several ways, for instance:

- *b* is regular absorbing; the process stays at *b*.
- *b* is regular reflecting, the process leaves *b* instantaneously and does not spend any positive Lebesgue time on it.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Minimal Logistic CSBPs: definition

Recall the form of a branching mechanism Ψ

$$\Psi(z) = -\lambda + \frac{\sigma^2}{2}z^2 + \gamma z + \int_0^{+\infty} \left(e^{-zx} - 1 + zx\mathbb{1}_{\{x \le 1\}}\right) \pi(\mathrm{d}x)$$

and $\mathcal{L}^{\text{CSBP}}$ the generator of the CSBP(Ψ), to incorporate quadratic competition, one sets $\mathcal{L}f(z) := \mathcal{L}^{\text{CSBP}}f(z) - \frac{c}{2}z^2f'(z).$

Definition

A minimal logistic continuous-state branching process is a càdlàg Markov process $(Z_t^{min}, t \ge 0)$ on $[0, \infty]$ with 0 and ∞ absorbing, satisfying : For any function $f \in C_c^2((0, \infty))$, the process

$$t \mapsto f\left(Z_{t\wedge\zeta}^{min}\right) - \int_{0}^{t} \mathcal{L}f\left(Z_{s\wedge\zeta}^{min}\right) \, \mathrm{d}s \qquad (\mathsf{MP})$$

is a martingale under each \mathbb{P}_z , with $\zeta := \inf\{t \ge 0; Z_t \notin (0, \infty)\}$.

Logistic CSBPs

Hitting times, local time and excursion measure 00000000000

References 000

Existence/uniqueness & explosion

Theorem

There exists a unique minimal logistic CSBP.

Sketch of proofs

Theorem (Accessibility of $\infty)$

Assume c>0. The boundary ∞ is accessible for $(Z_t^{min},t\geq 0)$ if and only if

$$\mathcal{E} := \int_0^\theta \frac{1}{x} \exp\left(\frac{2}{c} \int_x^\theta \frac{\Psi(u)}{u} \, \mathrm{d}u\right) \mathrm{d}x < \infty,$$

for some arbitrary $\theta > 0$.

Remark

If $\lambda > 0$ then $\mathcal{E} \propto \int_0 x^{\frac{2\lambda}{c} - 1} dx < \infty$. A $\lambda > 0$ is not necessary for having $\mathcal{E} < \infty$.

Elements of proof: Existence and Explosion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction Logistic CSBPs Sketch of proofs October O

Existence: time change an OU process (Lambert 05)

Let $(R_t, t \ge 0)$ be an Ornstein-Uhlenbeck type process defined by

$$R_t = z + Y_t - rac{c}{2} \int_0^t R_s \mathrm{d}s$$

where $(Y_t, t \ge 0)$ is a sp Lévy process with Laplace exponent Ψ . Let $t \mapsto C_t := \inf\{u \ge 0; \theta_u > t\} \in [0, \infty]$ be the right-inverse of

$$\theta_t := \int_0^{t \wedge \sigma_0} \frac{\mathrm{d}s}{R_s}$$

where $\sigma_0 := \inf\{t \ge 0, R_t < 0\}$ and set

$$Z_t^{\min} = \begin{cases} R_{C_t} & 0 \le t < \theta_{\infty} \\ 0 & t \ge \theta_{\infty} \text{ and } \sigma_0 < \infty \\ \infty & t \ge \theta_{\infty} \text{ and } \sigma_0 = \infty. \end{cases}$$

 $(Z_t^{\min}, t \ge 0)$ is a minimal logistic CSBP (i.e. solves **MP**).

Explosion criterion

The process $(Z_t^{\min},t\geq 0)$ hits ∞ if and only if $\sigma_0=\infty$ and

$$\zeta_{\infty} = \theta_{\infty} = \int_0^{\infty} \frac{\mathrm{d}s}{R_s} < \infty.$$

Shiga (PTRF 90) shows that $(R_s, s \ge 0)$ is recurrent if $\mathcal{E} = \infty$ and transient if $\mathcal{E} < \infty$:

- if $(R_s, s \ge 0)$ is recurrent then $\int_0^\infty \frac{\mathrm{d}s}{R_s} = \infty$ on $\{\sigma_0 = \infty\}$.
- if $(R_s, s \ge 0)$ is transient, one will show that on $\{\sigma_0 = \infty\}$

$$\int_0^\infty \frac{\mathrm{d}s}{R_s} < \infty \text{ a.s.}.$$

 $(R_t, t \ge 0); \text{ s.t. } \mathcal{E} < \infty, \sigma_0 = \infty$ (transient OU process): $R_t \to \infty \text{ as } t \to \infty.$ $(T_t^{min}, t \ge 0): \text{ time-changed process}$ $(Z_t^{min}, t \ge 0): \text{ time-changed process}$

Elements of proof: transience of $R \implies$ explosion of Z^{\min}

The Laplace transform of R is given by

$$\mathbb{E}_{z}(e^{-\theta R_{s}}) = \exp\left(-\theta e^{-\frac{c}{2}s}z + \int_{0}^{s} \Psi(e^{-\frac{c}{2}u}\theta) \mathrm{d}u\right),$$

see e.g. Sato's book. Let b > 0. By Tonelli, one has

$$\int_0^\infty \mathbb{E}_z \left(\frac{1 - e^{-bR_s}}{R_s}, \sigma_0 = \infty \right) \mathrm{d}s = \int_0^b \int_0^\infty \mathbb{E}_z (e^{-\theta R_s}, \sigma_0 = \infty) \mathrm{d}s \mathrm{d}\theta$$
$$\leq \int_0^b \int_0^\infty \mathbb{E}_z (e^{-\theta R_s}) \mathrm{d}s \mathrm{d}\theta = \frac{2}{c} \int_0^b \mathrm{d}\theta \int_0^\theta \frac{\mathrm{d}x}{x} e^{-xz + \int_x^\theta \frac{2\Psi(v)}{cv} \mathrm{d}v} \mathrm{d}x.$$

The upper bound is finite as soon as $\mathcal{E} = \int_0^\theta \frac{1}{x} e^{\int_x^\theta \frac{2\Psi(v)}{cv} dv} dx$ is finite.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

References 000

Thus if $\mathcal{E} < \infty$,

$$\mathbb{E}_{z}\left(\int_{0}^{\infty}\frac{1-e^{-bR_{s}}}{R_{s}}\mathrm{d}s,\sigma_{0}=\infty\right)<\infty.$$

We deduce then that on the event $\{\sigma_0=\infty\}$,

$$\int_0^\infty rac{1-e^{-bR_s}}{R_s} \mathrm{d} s < \infty$$
 a.s.

Since $\mathcal{E} < \infty$, $R_s \xrightarrow[s \to \infty]{s \to \infty} \infty$ a.s on the event $\{\sigma_0 = \infty\}$ and $\frac{1 - e^{-bR_s}}{R_s} \underset{s \to \infty}{\sim} \frac{1}{R_s}$ a.s. Therefore $\mathbb{P}_z \left(\int_0^\infty \frac{\mathrm{d}s}{R_s} < \infty |\sigma_0 = \infty \right) = 1,$

and the process $(Z_t^{\min}, t \ge 0)$ explodes.

Remark

There is no transience in LCSBPs, in the sense that the only way to converge towards ∞ is to hit it.

Generalized Feller diffusions and the key lemma

For all $x\in [0,\infty[$ and $z\in [0,\infty[$, let $e_x(z):=e^{-xz}=e_z(x),$ then

Lemma (Laplace's duality of generators)

For any $x, z \in (0, \infty)$ $\mathcal{L}e_x(z) = \mathcal{A}e_z(x)$ with $\mathcal{A}f(x) = \frac{c}{2}xf''(x) - \Psi(x)f'(x)$.

Proof.

$$\mathcal{L}e_x(z) = \Psi(x)ze_x(z) + \frac{c}{2}xz^2e_x(z) = -\Psi(x)\frac{\partial e_z(x)}{\partial x} + \frac{c}{2}x\frac{\partial^2 e_z(x)}{\partial x^2}.$$

We call Ψ -generalized Feller diffusion, a diffusion with generator \mathcal{A} . Ψ is locally Lipschitz on $(0, \infty)$ thus \exists ! strong solution to

$$\mathrm{d}U_t = \sqrt{cU_t}\mathrm{d}B_t - \Psi(U_t)\mathrm{d}t,$$

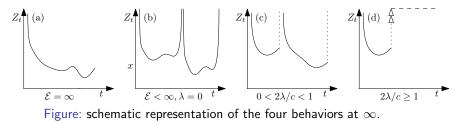
up to $\tau := \inf\{t > 0, U_t \notin (0, \infty)\}$. A 0 can be exit, regular or entrance and there is **not** a unique semi-group associated to \mathcal{A} (nor to \mathcal{L}).

Introduction	Logistic CSBPs	Sketch of proofs	Hitting times, local time and excursion measure	References
	000000000000000000000000000000000000000			

The possible behavior at the boundaries are as follows

Condition	Boundary of U	Boundary of " Z "
$\mathcal{E} = \infty$	0 exit	∞ entrance
$\mathcal{E} < \infty$ and $0 \leq rac{2\lambda}{c} < 1$	0 regular (absorbing)	∞ regular (reflecting)
$\frac{2\lambda}{c} \ge 1$	0 entrance	∞ exit
$\int^\infty rac{1}{\Psi} < \infty$	∞ entrance	0 exit
$\int^\infty \frac{1}{\Psi} = \infty$	∞ natural	0 natural

Table: Boundaries of U and boundaries of Z



・ロト・日本・日本・日本・日本・日本

Infinity as an Entrance Boundary: $\mathcal{E} = \infty$

In the sequel, we say that a process $(Z_t, t \ge 0)$ <u>extends</u> the minimal process if $(Z_{t \land \zeta_{\infty}}, t \ge 0) \stackrel{\mathcal{L}}{=} (Z_t^{\min}, t \ge 0)$ under \mathbb{P}_z for any $z \in [0, \infty)$.

Theorem (Infinity as entrance boundary)

Assume $\mathcal{E} = \infty$ then 0 is an **exit** of $(U_t, t \ge 0)$ and $(Z_t^{min}, t \ge 0)$ can be extended to a Feller process $(Z_t, t \ge 0)$ with ∞ as an **entrance boundary**, such that for all $t \ge 0$, all $z \in [0, \infty]$, all $x \in [0, \infty)$

$$\mathbb{E}_z(e^{-xZ_t}) = \mathbb{E}_x(e^{-zU_t})$$

in particular for $z = \infty$,

$$\mathbb{E}_{\infty}(e^{-xZ_t})=\mathbb{P}_x(U_t=0)>0.$$

Introduction Logistic	CSBPs Sketch of proofs	 Hitting times, local time and excursio 	n measure References
0000 000000	0000000000 00000000		

Example

Consider $\alpha \in (0,2]$, $\alpha \neq 1$ and $\Psi(z) = (\alpha - 1)z^{\alpha}$, then $\mathcal{E} = \infty$ and ∞ is an **entrance** boundary. For any $t \geq 0$, $z \in [0,\infty]$ and $x \in [0,\infty[$

$$\mathbb{E}_{z}(e^{-xZ_{t}}) = \mathbb{E}_{x}(e^{-zU_{t}}) \text{ with } \mathrm{d}U_{t} = \sqrt{cU_{t}}\mathrm{d}B_{t} + (1-\alpha)U_{t}^{\alpha}\mathrm{d}t,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

the boundary 0 of $(U_t, t \ge 0)$ is an **exit**.

Note that when $\alpha \in (0, 1)$, the CSBP without competition explodes, so that here competition prevents explosion.

Introduction Logistic CSBPs Sketch of proofs Hitting times, local time and excursion measure concorrection concor

Given Ψ and $k \ge 1$, define $\pi_k = \pi_{|]0,k[} + (\bar{\pi}(k) + \lambda)\delta_k$ and a branching mechanism Ψ_k by

$$\Psi_k(z) := \frac{\sigma^2}{2} z^2 + \gamma z + \int_0^\infty \left(e^{-zx} - 1 + zx \mathbb{1}_{x \in (0,1)} \right) \pi_k(\mathrm{d} x).$$

Call $Z^{(k)}$ the càdlàg logistic CSBP with mechanism Ψ_k and ∞ as entrance boundary.

Theorem (Infinity as regular reflecting boundary)

Assume $\mathcal{E} < \infty$ and $0 \le \frac{2\lambda}{c} < 1$, then $Z^{(k)} \Longrightarrow Z$ where Z is an extension of Z^{\min} , with ∞ regular reflecting, and for all $t \ge 0$, all $z \in [0, \infty]$ and $x \in [0, \infty)$,

$$\mathbb{E}_z(e^{-xZ_t}) = \mathbb{E}_x(e^{-zU_t^{\mathrm{a}}})$$

where $(U_t^{a}, t \ge 0)$ is solution to (\star) with 0 regular absorbing.

Logistic CSBPs

Sketch of proofs

Hitting times, local time and excursion measure 00000000000

References 000

Infinity as Exit Boundary: $\frac{2\lambda}{c} \ge 1$

Proposition

If $\mathcal{E} < \infty$ and $\frac{2\lambda}{c} < 1$ then ∞ is regular for itself, namely $S_{\infty} := \inf\{t > 0, Z_t = \infty\}$ is such that $\mathbb{P}_{\infty}(S_{\infty} = 0) = 1$.

In particular, there is a local time at ∞ . Assume now $\frac{2\lambda}{c} \ge 1$, recall $(Z^{(k)}, k \ge 1)$.

Theorem (Infinity as exit)

Assume $\frac{2\lambda}{c} \ge 1$ then 0 is an entrance for $(U_t, t \ge 0)$, and $Z^{(k)} \Longrightarrow Z$

where Z is an extension of Z^{min} , with ∞ exit and for all $t \ge 0$, all $z \in [0, \infty]$ and $x \in (0, \infty)$,

$$\mathbb{E}_z(e^{-xZ_t})=\mathbb{E}_x(e^{-zU_t}).$$

Example (\rightarrow *Fast-fragmentation-coalescence* process, Kyprianou et al. AoP17)

Hitting times, local time and excursion measure

Let $\lambda > 0$ and $\pi \equiv 0$ in order that $\Psi(x) = -\lambda$ for all $x \ge 0$.

Sketch of proofs

• If $\frac{2\lambda}{c} < 1$ then ∞ is regular reflecting and $\mathbb{E}_z(e^{-xZ_t}) = \mathbb{E}_x(e^{-zU_t^0})$ with $\mathrm{d}U_t^0 = \sqrt{cU_t^0}\mathrm{d}B_t + \lambda\mathrm{d}t$ and 0 regular absorbing.

• If
$$\frac{2\lambda}{c} \ge 1$$
 then ∞ is an **exit** and $\mathbb{E}_z(e^{-xZ_t}) = \mathbb{E}_x(e^{-zU_t})$ with $\mathrm{d}U_t = \sqrt{cU_t}\mathrm{d}B_t + \lambda\mathrm{d}t$, and 0 is an **entrance**.

Example with continuous explosion

Example

Introduction

Logistic CSBPs

Consider $\alpha > 0$, $\beta > 0$ and set $\pi(du) = \frac{\alpha}{u(\log u)^2} \mathbb{1}_{\{u \ge 2\}} du$.

- If $\frac{2\alpha}{c} \leq 1$ then $\mathcal{E} = \infty$ and ∞ is an **entrance** boundary.
- If $\frac{2\alpha}{c} > 1$ then $\mathcal{E} < \infty$ and ∞ is a regular reflecting boundary.

References

Logistic CSBPs	Hitting times, local time and excursion measure	References 000

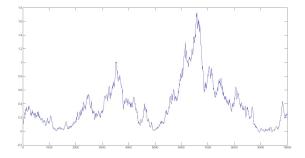


Figure: simulation of a Ψ -generalized Feller diffusion U reflected at 0, $\Psi(u) \sim -\alpha/\log(1/u)$ as u goes to 0.

(日)

Hitting times, local time and excursion measure

References 000

Theorem (Stationarity)

Assume Ψ of the form

$$\Psi(z) = -\lambda - \delta z - \int_0^\infty (1 - e^{-zu}) \pi(\mathrm{d} u)$$

with $\lambda \ge 0$, $\delta \ge 0$ and $\int_0^\infty (1 \wedge u) \pi(du) < \infty$. Assume $0 \le \frac{2\lambda}{c} < 1$ and define the condition

(A) :
$$(\delta = 0 \text{ and } \overline{\pi}(0) + \lambda \leq c/2).$$

- If (A) holds then $(Z_t, t \ge 0)$ converges in probab. to 0.
- If (A) is not satisfied then $(Z_t, t \ge 0)$ converges in law towards the distribution carried over $(\frac{2\delta}{c}, \infty)$ whose Laplace transform is

$$x \in \mathbb{R}_+ \mapsto \mathbb{E}[e^{-xZ_{\infty}}] := \frac{\int_x^{\infty} \exp\left(\int_{\theta}^y \frac{2\Psi(z)}{cz} \mathrm{d}z\right) \mathrm{d}y}{\int_0^{\infty} \exp\left(\int_{\theta}^y \frac{2\Psi(z)}{cz} \mathrm{d}z\right) \mathrm{d}y}$$

) 2 (~

Hitting times, local time and excursion measure

References 000

Theorem (long-time behavior, $0 \le \frac{2\lambda}{c} < 1$)

Let
$$(Z_t, t \ge 0)$$
 be the extended process started from $z \in (0, \infty)$.
1) If $0 \le \frac{2\lambda}{c} < 1$ and $\Psi(z) \ge 0$ for a certain $z > 0$ then
1-1) If $\int_{-\infty}^{\infty} \frac{du}{\Psi(u)} = \infty$, then $Z_t > 0$ for all $t \ge 0$ a.s. and $Z_t \xrightarrow{t \to \infty} 0$
a.s.
1-2) If $\int_{-\infty}^{\infty} \frac{du}{\Psi(u)} < \infty$, then $(Z_t, t \ge 0)$ is absorbed at 0 in a finite time a.s.

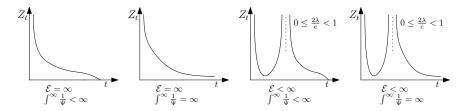


Figure: Schematic representation of the two behaviors at 0

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Theorem (long-time behavior, $\frac{2\lambda}{c} \geq 1$)

2) If
$$\frac{2\lambda}{c} \ge 1$$
 and $\Psi(z) < 0$ for all $z > 0$ then $(Z_t, t \ge 0)$ is
absorbed at ∞ in finite time a.s.
3) If $\frac{2\lambda}{c} \ge 1$ and $\Psi(z) \ge 0$ for a certain $z > 0$ then
 $\mathbb{P}_z(Z_t \xrightarrow{t \to \infty} 0) = 1 - \mathbb{P}_z(\zeta_\infty < \infty)$
 $= \frac{\int_0^\infty \frac{e^{-zu}}{u} \exp\left(-\int_{\theta}^u \frac{2\Psi(v)}{cv} dv\right) du}{\int_0^\infty \frac{1}{u} \exp\left(-\int_{\theta}^u \frac{2\Psi(v)}{cv} dv\right) du} \in (0, 1).$
and $Z_t > 0$ for all $t \ge 0$ a.s. iff $\int_0^\infty \frac{du}{\Psi(u)} = \infty$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

0000 00000000000000 0000000 00000000 0000000 000	Introduction	Logistic CSBPs	Sketch of proofs	Hitting times, local time and excursion measure	References
			00000000		

Proofs: construction of the extensions

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Logistic CSBPs

Sketch of proofs

Hitting times, local time and excursion measure 00000000000

References 000

A first duality result

Recall $e_x(z) = e_z(x) = e^{-xz}$ and $\mathcal{L}e_x(z) = \mathcal{A}e_z(x)$ for $x, z \in (0, \infty)$.

Lemma (Laplace's duality lemma)

Assume $\mathcal{E} = \infty$. $\forall z \in [0, \infty)$, $\forall x \in (0, \infty)$,

$$\mathbb{E}_{z}[e^{-xZ_{t}^{min}}]=\mathbb{E}_{x}[e^{-zU_{t}}].$$

Sketch of proof.

See Ethier and Kurtz (corollary 4.15 p196). Assume U and Z^{\min} independent, by the martingale problems for U and Z^{\min} , using that Z^{\min} does not explode and that 0 is an exit for U, we get

$$\frac{\mathrm{d}}{\mathrm{d}s}\mathbb{E}(e^{-U_{t-s}Z_s^{\min}}) = \mathbb{E}\left(\mathcal{L}e_{U_{t-s}}(Z_s^{\min}) - \mathcal{A}e_{Z_s^{\min}}(U_{t-s})\right) = 0.$$

Hence

$$\mathbb{E}(e^{-U_{t-s}Z_s^{\min}})=\mathbb{E}(e^{-U_tz})=\mathbb{E}(e^{-xZ_t^{\min}}).$$

Logistic CSBPs Sketch of proofs

Hitting times, local time and excursion measure

References 000

Theorem (Stationarity)

Assume Ψ of the form

$$\Psi(z) = -\lambda - \delta z - \int_0^\infty (1 - e^{-zu}) \pi(\mathrm{d} u)$$

with $\lambda \ge 0$, $\delta \ge 0$ and $\int_0^\infty (1 \wedge u) \pi(du) < \infty$. Assume $0 \le \frac{2\lambda}{c} < 1$ and define the condition

(A) :
$$(\delta = 0 \text{ and } \overline{\pi}(0) + \lambda \leq c/2).$$

- If (A) holds then $(Z_t, t \ge 0)$ converges in probab. to 0.
- If (A) is not satisfied then $(Z_t, t \ge 0)$ converges in law towards the distribution carried over $(\frac{2\delta}{c}, \infty)$ whose Laplace transform is

$$x \in \mathbb{R}_+ \mapsto \mathbb{E}[e^{-xZ_{\infty}}] := \frac{\int_x^{\infty} \exp\left(\int_{\theta}^y \frac{2\Psi(z)}{cz} \mathrm{d}z\right) \mathrm{d}y}{\int_0^{\infty} \exp\left(\int_{\theta}^y \frac{2\Psi(z)}{cz} \mathrm{d}z\right) \mathrm{d}y}$$

Infinity as an Entrance Boundary: sketch of proof

Recall

$$\mathbb{E}_{z}[e^{-xZ_{t}^{\min}}] = \mathbb{E}_{x}[e^{-zU_{t}}].$$

• Set $P_t e_x(z) := \mathbb{E}_z[e^{-xZ_t^{\min}}]$ for $z \in [0,\infty[$ and

$$P_t e_x(\infty) := \lim_{z \to \infty} \mathbb{E}_z[e^{-xZ_t^{\min}}] = \mathbb{P}_x(U_t = 0).$$

• Since $\mathcal{E} = \infty$, 0 is an exit of U and $\mathbb{P}_x(U_t = 0) > 0$.

• $x \mapsto \mathbb{P}_x(U_t = 0) = \mathbb{P}_x(\tau_0 \le t)$ is the Laplace transform of a probability entrance law η_t , i.e. for any t > 0 and $s \ge 0$

$$\eta_{t+s} = \eta_t P_s$$

and $(P_t, t \ge 0)$ is a Feller semigroup on $[0, \infty]$.

• Let $(Z_t, t \ge 0)$ be a Feller process with semigroup $(P_t, t \ge 0)$. By definition: for any $z \in [0, \infty)$:

Sketch of proofs

000000000

$$\mathbb{E}_{z}[e^{-xZ_{t}}] = \mathbb{E}_{x}[e^{-zU_{t}}]$$

Hitting times, local time and excursion measure

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

and

$$\mathbb{E}_{\infty}[e^{-xZ_t}] = \mathbb{E}_x[e^{-\infty \cdot U_t}] = \mathbb{P}_x(U_t = 0).$$

Hence it has ∞ as entrance boundary.

۲

Introduction

$$\mathbb{P}_{\infty}(Z_t < \infty) = \lim_{x \to 0^+} \mathbb{E}_{\infty}(e^{-xZ_t})$$

 $= \lim_{x \to 0^+} \mathbb{P}_x(U_t = 0)$
 $= \mathbb{P}_{0^+}(U_t = 0) = 1.$

Hence ∞ is instantaneous.

Infinity as regular reflecting boundary: sketch of proof.

Assume $\mathcal{E} < \infty$ and $\frac{2\lambda}{c} < 1$. Set $U_t^{(k)}$ the Ψ_k -generalized Feller diffusion and $Z^{(k)}$ the LCSBP(Ψ_k, c): $Z^{(k)}$ does not explode and by the previous result has ∞ entrance and

$$\mathbb{E}_{z}[e^{-xZ_{t}^{(k)}}] = \mathbb{E}_{x}[e^{-zU_{t}^{(k)}}]$$

where $U^{(k)}$ has 0 exit.

• For all x, $\Psi_{k+1}(x) \leq \Psi_k(x)$ so by the comparison theorem: $U_t^{(k+1)} \geq U_t^{(k)}$ for all t a.s. and $U_t^{(k)} \to U_t^{(\infty)}$ as $k \to \infty$. 0 is an exit for each $U^{(k)}$ $U(\infty)$ $\tau^{(k)}$ $\tau^{(k+1)}$ τ^{∞} ∃ <2 <</p>

References 000

• Since
$$||\mathcal{A}^{(k)}f - \mathcal{A}f||_{\infty} \to 0$$
 for any $f \in C_c^2$,

 $(U_t^{(\infty)}, t \leq au^\infty) \stackrel{\textit{law}}{=}$ the minimal diffusion with generator $\mathcal A$

$$au^{\infty} := \inf\{t; U_t^{(\infty)} = 0\} \text{ and } \mathbb{P}_x(\tau^{\infty} < \infty) > 0 \text{ since } \frac{2\lambda}{c} < 1.$$

• Since
$$\tau^{\infty} \ge \tau^{(k)}$$
 and 0 is an exit of $(U_t^{(k)}, t \ge 0)$, on
 $\{\tau^{\infty} < \infty\}$
 $U_{t+\tau^{\infty}}^{(\infty)} = \lim U_{t+\tau^{\infty}}^{(k)} = 0.$

Thus $(U_t^{(\infty)}, t \ge 0)$ has 0 regular absorbing. To sum up, when $\mathcal{E} < \infty$ and $\frac{2\lambda}{c} < 1$

$$\mathbb{E}_{x}[e^{-zU_{t}^{(k)}}] \xrightarrow[k \to \infty]{} \mathbb{E}_{x}[e^{-zU_{t}^{\mathrm{a}}}]$$

where $(U_t^{a}, t \ge 0)$ is the Ψ -generalized Feller diffusion with 0 regular absorbing.

References 000

Let $(P_t^{(k)}, t \ge 0)$ the semi-group of $(Z_t^{(k)}, t \ge 0)$. Set

$$\mathcal{P}_t e_{\mathsf{x}}(z) := \lim_{k \to \infty} \mathcal{P}_t^{(k)} e_{\mathsf{x}}(z) = \mathbb{E}_{\mathsf{x}}[e^{-zU_t^{\mathrm{a}}}].$$

Stone-Weierstrass entails that $P_t C_b \subset C_b$, where $C_b := C([0,\infty],\mathbb{R})$. One has

$$||P_t^{(k)}e_x - P_te_x||_{\infty} = \sup_{z \in [0,\infty]} \left(\mathbb{E}_x[e^{-zU_t^{(k)}}] - \mathbb{E}_x[e^{-zU_t^{a}}] \right) \underset{k \to \infty}{\longrightarrow} 0$$

Stone-Weierstrass again entails $||P_t^{(k)}f - P_tf||_{\infty} \longrightarrow 0$ for any $f \in C_b$ and

- $(P_t, t \ge 0)$ is a semigroup with the Feller property.
- Unif. conv. of semigroups implies convergence in D (Ethier-Kurtz (Thm 2.5 p167)), thus:

$$(Z_t^{(k)}, t \ge 0) \Longrightarrow (Z_t, t \ge 0)$$

Let $(Z_t, t \ge 0)$ be the Markov process on $[0, \infty]$ with semigroup $(P_t, t \ge 0)$. One has $\mathbb{E}_{z}[e^{-xZ_t}] = \mathbb{E}_{x}[e^{-zU_t^a}].$

It remains to show that Z is an extension of Z^{\min} . One has for any $f \in C^2_c$,

$$||\mathcal{L}^{(k)}f - \mathcal{L}f||_{\infty}
ightarrow 0$$
 as $k
ightarrow \infty$

and thus $(Z_{t\wedge\zeta_{\infty}},t\geq 0)$ solves (MP). By well-posedness,

$$(Z_{t\wedge\zeta_{\infty}},t\geq 0)\stackrel{law}{=}(Z_t^{\min},t\geq 0).$$

Conclusion: when $\mathcal{E} < \infty$ and $\frac{2\lambda}{c} < 1$, ∞ is accessible and

$$\mathbb{E}_\infty[e^{-xZ_t}]=\mathbb{P}_x(U^0_t=0)=\mathbb{P}_x(au_0\leq t)>0$$

and ∞ is regular for Z. Moreover for any $z \in [0, \infty]$,

$$\mathbb{P}_z(Z_t < \infty) = \mathbb{E}_{0+}[e^{-zU_t^0}] = 1$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

and ∞ is reflecting.

- What happens in the process past explosion is entirely encoded in the law of the first hitting time of 0 of *U*.
- We have so far not obtained precise information on the first explosion time, the local time at ∞ and the excursion measure. The construction given previously of the LCSBP Z reflected at ∞ does not allow us to describe the latters.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In the remaining time, we now state some results in this direction.

In order to go further in the description of the reflected process Z, we will use a second duality relationship: for any $x, y \in (0, \infty)$ and $t \ge 0$,

$$\mathbb{P}_{x}(U_{t} < y) = \mathbb{P}_{y}(x < V_{t}), \qquad (3)$$

00000000000

Hitting times, local time and excursion measure

References

where the process $(V_t, t \ge 0)$ is the so-called Siegmund dual diffusion of U.

Introduction

Logistic CSBPs

$$Z \stackrel{\text{Laplace dual}}{\longleftrightarrow} U \stackrel{\text{Siegmund dual}}{\longleftrightarrow} V. \tag{4}$$

By combining the two dualities one can check that for any $t \ge 0$ and all $z, x \in (0, \infty)$,

$$\mathbb{E}_{z}(e^{-xZ_{t}}) = \int_{0}^{\infty} z e^{-zy} \mathbb{P}_{y}(V_{t} > x) \mathrm{d}y.$$
(5)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Digression: Siegmund duality for one-dimensional diffusions

Theorem (Diffusions and Siegmund duality)

Let σ^2 be a C^1 strictly positive function on $(0, \infty)$ and μ be a continuous function on $(0, \infty)$. Let $(U_t, t \ge 0)$ be a diffusion over $(0, \infty)$ with generator

$$\mathscr{A}f(x) := \frac{1}{2}\sigma^2(x)f''(x) + \mu(x)f'(x)$$

such that ∞ is either inaccessible (entrance or natural) or absorbing (exit or regular absorbing). Then for any $0 < u, v < \infty$ and any $t \ge 0$

$$\mathbb{P}_u(U_t < v) = \mathbb{P}_v(V_t > u), \tag{6}$$

with $(V_t, t \ge 0)$ the diffusion whose generator is

$$\mathscr{G}f(x) := \frac{1}{2}\sigma^2(x)f''(x) + \left(\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}x}\sigma^2(x) - \mu(x)\right)f'(x).$$
(7)

Let S_U and M_U be the scale function and the speed measure of U. Up to some irrelevant multiplicative constants, we have the equalities

$$S_U = M_V, M_U = S_V.$$

The following correspondences for boundaries and longterm behaviors of U and V hold:

U	V
0 exit	0 entrance
0 regular absorbing	0 regular reflecting
0 entrance	0 exit
∞ exit	∞ entrance
∞ & 0 attracting	positive recurrence

Table: Boundaries of U, V.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

istic CSBPs

Sketch of proofs

Hitting times, local time and excursion measure $\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ$

References 000

Proposition

The Siegmund dual of $(U_t, t \ge 0)$ is the diffusion $(V_t, t \ge 0)$ solution to an SDE of the form

$$\mathrm{d}V_t = \sqrt{cV_t}\mathrm{d}B_t + (c/2 + \Psi(V_t))\mathrm{d}t, \ V_0 = y \in (0,\infty), \quad (8)$$

where $(B_t, t \ge 0)$ is some Brownian motion and whose boundary condition at 0 and ∞ are given in correspondence with that of U in the following way:

Integral condition	Boundary of U	Boundary of V
$\mathcal{E} = \infty$	0 exit	0 entrance
$\mathcal{E} < \infty$ & 2 $\lambda/c < 1$	0 regular absorbing	0 regular reflecting
$2\lambda/c \geq 1$	0 entrance	0 exit
$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{\Psi(x)} = \infty$	∞ natural	∞ natural
$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{\Psi(x)} < \infty$	∞ entrance	∞ exit

Gathering the correspondences displayed in previous tables, we obtain the following ones between V and Z. Notice that the boundaries 0 and ∞ are exchanged but the behaviors of the processes are not anymore.

Boundary of V	Boundary of Z
0 entrance	∞ entrance
0 regular reflecting	∞ regular reflecting
0 exit	∞ exit
∞ natural	0 natural
∞ exit	0 exit

Table: Boundaries of V, Z.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Denote by T_y the first hitting time of $y \in [0, \infty]$ of the diffusion $(V_t, t \ge 0)$ and set \mathscr{G} its generator:

$$\mathscr{G}f(x) := \frac{c}{2}xf''(x) + \left(\frac{c}{2} + \Psi(x)\right)f'(x). \tag{9}$$

Then, from the general theory of one-dimensional diffusions, the Laplace transform of T_{γ} is expressed, for any $\theta > 0$, as

$$\mathbb{E}_{x}[e^{-\theta T_{y}}] = \begin{cases} \frac{h_{\theta}^{+}(x)}{h_{\theta}^{+}(y)}, & x \leq y\\ \frac{h_{\theta}^{-}(x)}{h_{\theta}^{-}(y)}, & x \geq y, \end{cases}$$
(10)

and functions h_{θ}^- and h_{θ}^+ are C^2 and respectively decreasing and increasing solutions to the equation

$$\mathscr{G}h(x) := \frac{c}{2}xh''(x) + \left(\frac{c}{2} + \Psi(x)\right)h'(x) = \theta h(x), \text{ for all } x \in (0,\infty).$$
(11)
with appropriate boundary conditions at non-natural boundary

points.

Denote by \mathbb{P}_z an exponential random variable independent of V with parameter z, and by $T_y^{\mathbb{P}_z}$ the first hitting time of point y by the diffusion V started from \mathbb{P}_z .

Theorem (Laplace transform of the extinction time of LCSBPs)

For any $0 < z < \infty$ and $\theta > 0$,

$$\mathbb{E}_{z}[e^{-\theta\zeta_{0}}] = \int_{0}^{\infty} z e^{-zx} \frac{h_{\theta}^{+}(x)}{h_{\theta}^{+}(\infty)} \mathrm{d}x = \mathbb{E}[e^{-\theta T_{\infty}^{\otimes z}}] \in [0,\infty)$$
(12)

In particular, if ∞ is not absorbing for Z (i.e. if $2\lambda/c < 1$) then

$$\mathbb{E}_{\infty}[e^{- heta\zeta_0}] = \mathbb{E}_0[e^{- heta T_{\infty}}] \in (0,\infty).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Logistic CSBPs

Sketch of proofs

Hitting times, local time and excursion measure 0000000000000

References 000

Theorem (Laplace transform of the first explosion time of LCSBPs)

$$\mathbb{E}_{z}[e^{-\theta\zeta_{\infty}}] = \int_{0}^{\infty} z e^{-zx} \frac{h_{\theta}^{-}(x)}{h_{\theta}^{-}(0)} \mathrm{d}x = \mathbb{E}[e^{-\theta T_{0}^{e_{z}}}] \in [0,\infty).$$

Theorem (Local time)

Assume ∞ regular reflecting ($\mathcal{E} < \infty$ & $2\lambda/c < 1$),

- the local time at ∞ of Z, (L^Z_t, t ≥ 0) has the same law as the local time of V at 0, (L^V_t, t ≥ 0), for a certain deterministic multiplicative factor.
- the Laplace exponent of the inverse local time subordinator (τ^Z_x, 0 ≤ x < ξ) is κ_Z : θ → 1/h⁻_θ(0).

In addition,

$$\kappa_Z(0) = 1/S_Z(0)$$

with
$$S_Z(0) := \int_0^\infty \frac{1}{c} \frac{\mathrm{d}x}{x} e^{-\int_{x_0}^x \frac{2\Psi(y)}{cy} \mathrm{d}y} \in (0,\infty],$$

Logistic CSBPs

Sketch of proofs

Hitting times, local time and excursion measure 0000000000000

References 000

Corollary

Assume
$$\mathcal{E} < \infty$$
 & $\frac{2\lambda}{c} < 1$, set $\mathcal{I} := \{t > 0 : Z_t = \infty\}$,

$$\dim_{\mathcal{H}}(\mathcal{I}) = 2\lambda/c \in [0,1)$$
 a.s.

Example

 A specific example is given by the case Ψ ≡ −λ with λ > 0. In this setting, the diffusion V is solution to the SDE

$$\mathrm{d}V_t = \sqrt{cV_t}\mathrm{d}B_t + (c/2 - \lambda)\mathrm{d}t.$$

Therefore, V is a squared Bessel diffusion with non-negative dimension and the inverse local time at 0 of V is a stable subordinator with index $2\lambda/c$

If $\Psi(x) \sim_{x \to 0+} -\alpha / \log(1/x)$. One has *E* < ∞ and by the corollary , dim_H(*I*) = 0 a.s..

Introduction	Logistic CSBPs	Sketch of proofs	Hitting times, local time and excursion measure	References
			00000000000	

Theorem (Excursion measure)

Assume ∞ regular reflecting ($\mathcal{E} < \infty$ & $2\lambda/c < 1$). For any $x \in [0, \infty)$ and q > 0,

$$n_{Z}\left(\int_{0}^{\zeta} e^{-qu} e^{-x\epsilon(u)} \mathrm{d}u\right) = n_{V}\left(\int_{0}^{\ell} e^{-qu} \mathbb{1}_{(x,\infty)}(\omega(u)) \mathrm{d}u\right).$$
(13)

Moreover,

$$n_Z\left(\int_0^\zeta e^{-x\epsilon(u)} \mathrm{d}u\right) = \int_x^\infty e^{\int_{x_0}^y \frac{2\Psi(u)}{cu} \mathrm{d}u} \mathrm{d}y \in (0,\infty].$$
(14)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 Introduction
 Logistic CSBPs
 Sketch of proofs
 Hitting times, local time and excursion measure
 References

 0000
 0000000000000
 0000000000
 0000000000
 000

Theorem

Assume ∞ regular reflecting ($\mathcal{E} < \infty \& 2\lambda/c < 1$) and that $-\Psi$ is not the Laplace exponent of a subordinator. Denote by I the infimum of an excursion of Z. Its law under n_Z is given by

$$n_Z(I \leq a) = 1/S_Z(a),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

with $S_Z(a) := \int_0^\infty \frac{1}{c} \frac{\mathrm{d}x}{x} e^{-ax} e^{-\int_{x_0}^x \frac{2\Psi(u)}{cu} \mathrm{d}u}$ for all $a \ge 0$.

Introduction	Logistic CSBPs	Sketch of proofs	Hitting times, local time and excursion measure	References
				•00

Stewart N. Ethier and Thomas G. Kurtz, *Markov processes*.

- C. Foucart, Continuous-state branching processes with competition: Duality and Reflection at Infinity, (EJP 2019).
- C. Foucart, Local explosions and extinction in Logistic continuous-state branching processes, (2021+) on ArXiv.
- A. Lambert, *The branching process with logistic growth*, Ann. Appl. Probab. **15** (2005), no. 2, 1506–1535.

T. Shiga, A recurrence criterion for Markov processes of Ornstein-Uhlenbeck type, Probab. Theory Related Fields (1990).

Conclusion of the short course

We have seen two different uses of stochastic duality with respect to a function:

$$\mathbb{E}_{x}[H(X_{t},y)] = \mathbb{E}_{y}[H(x,Y_{t})]$$

• In the first two talks, we have investigated the flow of CSBPs X and its Siegmund dual $Y := \hat{X}$, the dual function was

 $H(x,y) = \mathbb{1}_{\{x \leq y\}}.$

The duality was made pathwise by the use of Bertoin-Le Gall's flow; and related to the genealogy backwards in time.

• In the last talk; we have used first a duality relationship with X = Z, the LCSBP, Y = U the Ψ -generalized Feller diffusion with function

$H(z,x)=e^{-xz}$

for studying the LCSBP and its recurrent extensions of the process past explosion as well as its long-term behavior. We then use a second dual process V, Siegmund dual of U, for studying deeper the process.

Introduction	Logistic CSBPs	Sketch of proofs	Hitting times, local time and excursion measure	References
				000

Thank you for your attention

(ロ)、(型)、(E)、(E)、 E) の(()