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Introduction

Imagine a random continuous population with the following
dynamics:

Each individual reproduces independently, with the same law
(as in a continuous-state branching process (CSBP))

At constant rate, two individuals are picked in the population,
and one kills the other (quadratic competition).

The total size of the population, say (Zt , t ≥ 0), is called logistic
continuous-state branching process (Lambert 2005). Formally,

dZt = CSBP dynamics− c

2
Z 2
t dt. (1)

This is a random analogue of the logistic function introduced by
Verhulst (1844) and solving:

dzt = γztdt −
c

2
z2
t dt. (2)

One can solve (2) explicitely. There is an equilibrium at 2γ
c and it

can be started from ∞.
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o Competition destroys the branching property. The aim is to
study these processes with general branching mechanisms,
including those for which CSBPs explode in finite time.

Questions

1 Are there strong enough reproduction laws to face the
competition and explosion to occur? (∞ accessible.)

2 If the process does not explode, is it possible to start it from
infinity ? (∞ entrance.)

3 If the process explodes, can we extend it after its first
explosion time continuously or not? (∞ regular or exit.)

4 ...

(1) will be solved by arguments of “time-change”,

(2) and (3) by “duality”. We will find NAS conditions for ∞
to be regular and build an extended process (Zt , t ≥ 0) with
∞ regular reflecting, namely s.t.

λ({t > 0,Zt =∞}) = 0 a.s.
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Feller’s boundary classification

Consider a process valued in an interval (a, b) with a < b ∈ [0,∞],

the boundary b is accessible if the process enters into b with
positive probability. If b is accessible, then

when the process cannot get out from b, the boundary b is
said to be an exit
or
when the process can get out from b, the boundary b is called
a regular boundary.

If the boundary b is inaccessible, then

when the process cannot get out from b, the boundary b is
said to be natural
or
when the process can get out from b, the boundary b is said to
be an entrance.

In the case of a diffusion, integral tests for each possible boundary
are known in terms of the scale function and speed measure,
(Feller (1954)).
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When a boundary b is regular, the process after hitting b can be
extended in several ways, for instance:

b is regular absorbing; the process stays at b.

b is regular reflecting, the process leaves b instantaneously
and does not spend any positive Lebesgue time on it.
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Minimal Logistic CSBPs: definition

Recall the form of a branching mechanism Ψ

Ψ(z) = −λ+
σ2

2
z2 + γz +

∫ +∞

0

(
e−zx − 1 + zx1{x≤1}

)
π(dx)

and LCSBP the generator of the CSBP(Ψ), to incorporate
quadratic competition, one sets

Lf (z) := LCSBPf (z)− c

2
z2f ′(z).

Definition

A minimal logistic continuous-state branching process is a càdlàg
Markov process (Zmin

t , t ≥ 0) on [0,∞] with 0 and ∞ absorbing,
satisfying : For any function f ∈ C 2

c ((0,∞)), the process

t 7→ f
(
Zmin
t∧ζ
)
−
∫ t

0
Lf
(
Zmin
s∧ζ
)
ds (MP)

is a martingale under each Pz , with ζ := inf{t ≥ 0;Zt /∈ (0,∞)}.
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Existence/uniqueness & explosion

Theorem

There exists a unique minimal logistic CSBP.

Theorem (Accessibility of ∞)

Assume c > 0. The boundary ∞ is accessible for (Zmin
t , t ≥ 0) if

and only if

E :=

∫ θ

0

1

x
exp

(
2

c

∫ θ

x

Ψ(u)

u
du

)
dx <∞,

for some arbitrary θ > 0.

Remark

If λ > 0 then E ∝
∫

0 x
2λ
c
−1dx <∞. o λ > 0 is not necessary for

having E <∞.



Introduction Logistic CSBPs Sketch of proofs Hitting times, local time and excursion measure References

Elements of proof: Existence and Explosion
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Existence: time change an OU process (Lambert 05)

Let (Rt , t ≥ 0) be an Ornstein-Uhlenbeck type process defined by

Rt = z + Yt − c
2

∫ t
0 Rsds

where (Yt , t ≥ 0) is a sp Lévy process with Laplace exponent Ψ.
Let t 7→ Ct := inf{u ≥ 0; θu > t} ∈ [0,∞] be the right-inverse of

θt :=
∫ t∧σ0

0
ds
Rs

where σ0 := inf{t ≥ 0,Rt < 0} and set

Zmin
t =


RCt 0 ≤ t < θ∞

0 t ≥ θ∞ and σ0 <∞
∞ t ≥ θ∞ and σ0 =∞.

(Zmin
t , t ≥ 0) is a minimal logistic CSBP (i.e. solves MP).
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Explosion criterion

The process (Zmin
t , t ≥ 0) hits ∞ if and only if σ0 =∞ and

ζ∞ = θ∞ =

∫ ∞
0

ds

Rs
<∞.

Shiga (PTRF 90) shows that (Rs , s ≥ 0) is recurrent if E =∞ and
transient if E <∞:

if (Rs , s ≥ 0) is recurrent then
∫∞

0
ds
Rs

=∞ on {σ0 =∞}.
if (Rs , s ≥ 0) is transient, one will show that on {σ0 =∞}∫ ∞

0

ds

Rs
<∞ a.s..

z

0

Rt −→∞ as t→∞.

Zmin
t =∞ for t ≥ ζ∞

(Rt, t ≥ 0); s.t. E <∞, σ0 =∞ (Zmin
t , t ≥ 0): time-changed process

ζ∞ =
∫∞
0

ds
Rs

0

z

(transient OU process):
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Elements of proof: transience of R =⇒ explosion of Zmin

The Laplace transform of R is given by

Ez(e−θRs ) = exp

(
−θe−

c
2
sz +

∫ s

0
Ψ(e−

c
2
uθ)du

)
,

see e.g. Sato’s book. Let b > 0. By Tonelli, one has∫ ∞
0

Ez

(
1− e−bRs

Rs
, σ0 =∞

)
ds =

∫ b

0

∫ ∞
0

Ez(e−θRs , σ0 =∞)dsdθ

≤
∫ b

0

∫ ∞
0

Ez(e−θRs )dsdθ =
2

c

∫ b

0
dθ

∫ θ

0

dx

x
e−xz+

∫ θ
x

2Ψ(v)
cv

dvdx .

The upper bound is finite as soon as E =
∫ θ

0
1
x e

∫ θ
x

2Ψ(v)
cv

dvdx is
finite.
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Thus if E <∞,

Ez

(∫ ∞
0

1− e−bRs

Rs
ds, σ0 =∞

)
<∞.

We deduce then that on the event {σ0 =∞},∫∞
0

1−e−bRs

Rs
ds <∞ a.s.

Since E <∞, Rs −→
s→∞

∞ a.s on the event {σ0 =∞} and

1−e−bRs

Rs
∼

s→∞
1
Rs

a.s. Therefore

Pz

(∫ ∞
0

ds

Rs
<∞|σ0 =∞

)
= 1,

and the process (Zmin
t , t ≥ 0) explodes.

Remark

There is no transience in LCSBPs, in the sense that the only way
to converge towards ∞ is to hit it.
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Generalized Feller diffusions and the key lemma

For all x ∈ [0,∞[ and z ∈ [0,∞[, let ex(z) := e−xz = ez(x), then

Lemma (Laplace’s duality of generators)

For any x , z ∈ (0,∞)

Lex(z) = Aez(x) with Af (x) = c
2xf
′′(x)−Ψ(x)f ′(x).

Proof.

Lex(z) = Ψ(x)zex(z) + c
2xz

2ex(z) = −Ψ(x)∂ez (x)
∂x + c

2x
∂2ez (x)
∂x2 .

We call Ψ-generalized Feller diffusion, a diffusion with generator
A. Ψ is locally Lipschitz on (0,∞) thus ∃! strong solution to

dUt =
√

cUtdBt −Ψ(Ut)dt,

up to τ := inf{t > 0,Ut /∈ (0,∞)}. o 0 can be exit, regular or
entrance and there is not a unique semi-group associated to A
(nor to L).



Introduction Logistic CSBPs Sketch of proofs Hitting times, local time and excursion measure References

The possible behavior at the boundaries are as follows

Condition Boundary of U Boundary of “ Z ”

E =∞ 0 exit ∞ entrance

E <∞ and 0 ≤ 2λ
c < 1 0 regular (absorbing) ∞ regular (reflecting)

2λ
c ≥ 1 0 entrance ∞ exit∫∞ 1

Ψ <∞ ∞ entrance 0 exit∫∞ 1
Ψ =∞ ∞ natural 0 natural

Table: Boundaries of U and boundaries of Z

x

E <∞, λ = 0 2λ/c ≥ 1t t tt

Zt ZtZt Zt(a) (b) (c) (d)

E =∞ 0 < 2λ/c < 1

Figure: schematic representation of the four behaviors at ∞.
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Infinity as an Entrance Boundary: E =∞

In the sequel, we say that a process (Zt , t ≥ 0) extends the

minimal process if (Zt∧ζ∞ , t ≥ 0)
L
= (Zmin

t , t ≥ 0) under Pz for any
z ∈ [0,∞).

Theorem (Infinity as entrance boundary)

Assume E =∞ then 0 is an exit of (Ut , t ≥ 0) and (Zmin
t , t ≥ 0)

can be extended to a Feller process (Zt , t ≥ 0) with ∞ as an
entrance boundary, such that for all t ≥ 0, all z ∈ [0,∞], all
x ∈ [0,∞)

Ez(e−xZt ) = Ex(e−zUt )

in particular for z =∞,

E∞(e−xZt ) = Px(Ut = 0) > 0.
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Example

Consider α ∈ (0, 2], α 6= 1 and Ψ(z) = (α− 1)zα, then E =∞
and ∞ is an entrance boundary. For any t ≥ 0, z ∈ [0,∞] and
x ∈ [0,∞[

Ez(e−xZt ) = Ex(e−zUt ) with dUt =
√
cUtdBt + (1− α)Uα

t dt,

the boundary 0 of (Ut , t ≥ 0) is an exit.

Note that when α ∈ (0, 1), the CSBP without competition
explodes, so that here competition prevents explosion.
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Infinity as regular reflecting boundary: E <∞ & 2λ
c < 1

Given Ψ and k ≥ 1, define πk = π|]0,k[ + (π̄(k) + λ)δk and a
branching mechanism Ψk by

Ψk(z) :=
σ2

2
z2 + γz +

∫ ∞
0

(
e−zx − 1 + zx1x∈(0,1)

)
πk(dx).

Call Z (k) the càdlàg logistic CSBP with mechanism Ψk and ∞ as
entrance boundary.

Theorem (Infinity as regular reflecting boundary)

Assume E <∞ and 0 ≤ 2λ
c < 1, then Z (k) =⇒ Z where Z is an

extension of Zmin, with ∞ regular reflecting, and for all t ≥ 0, all
z ∈ [0,∞] and x ∈ [0,∞),

Ez(e−xZt ) = Ex(e−zU
a
t )

where (Ua
t , t ≥ 0) is solution to (?) with 0 regular absorbing.
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Infinity as Exit Boundary: 2λ
c ≥ 1

Proposition

If E <∞ and 2λ
c < 1 then ∞ is regular for itself, namely

S∞ := inf{t > 0,Zt =∞} is such that P∞(S∞ = 0) = 1.

In particular, there is a local time at ∞. Assume now 2λ
c ≥ 1,

recall (Z (k), k ≥ 1).

Theorem (Infinity as exit)

Assume 2λ
c ≥ 1 then 0 is an entrance for (Ut , t ≥ 0), and

Z (k) =⇒ Z

where Z is an extension of Zmin, with ∞ exit and for all t ≥ 0, all
z ∈ [0,∞] and x ∈ (0,∞),

Ez(e−xZt ) = Ex(e−zUt ).
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Example (→Fast-fragmentation-coalescence process, Kyprianou et
al. AoP17)

Let λ > 0 and π ≡ 0 in order that Ψ(x) = −λ for all x ≥ 0.

If 2λ
c < 1 then ∞ is regular reflecting and

Ez(e−xZt ) = Ex(e−zU
0
t ) with dU0

t =
√

cU0
t dBt + λdt and 0

regular absorbing.

If 2λ
c ≥ 1 then ∞ is an exit and

Ez(e−xZt ) = Ex(e−zUt ) with dUt =
√
cUtdBt + λdt, and 0 is

an entrance.

Example with continuous explosion

Example

Consider α > 0, β > 0 and set π(du) = α
u(log u)21{u≥2}du.

If 2α
c ≤ 1 then E =∞ and ∞ is an entrance boundary.

If 2α
c > 1 then E <∞ and ∞ is a regular reflecting

boundary.
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Figure: simulation of a Ψ-generalized Feller diffusion U reflected at 0,
Ψ(u) ∼ −α/ log(1/u) as u goes to 0.
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Theorem (Stationarity)

Assume Ψ of the form

Ψ(z) = −λ− δz −
∫ ∞

0
(1− e−zu)π(du)

with λ ≥ 0, δ ≥ 0 and
∫∞

0 (1 ∧ u)π(du) <∞. Assume 0 ≤ 2λ
c < 1

and define the condition

(A) : (δ = 0 and π̄(0) + λ ≤ c/2).

- If (A) holds then (Zt , t ≥ 0) converges in probab. to 0.

- If (A) is not satisfied then (Zt , t ≥ 0) converges in law
towards the distribution carried over ( 2δ

c ,∞) whose Laplace
transform is

x ∈ R+ 7→ E[e−xZ∞ ] :=

∫∞
x exp

(∫ y
θ

2Ψ(z)
cz dz

)
dy∫∞

0 exp
(∫ y

θ
2Ψ(z)
cz dz

)
dy
.
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Theorem (long-time behavior, 0 ≤ 2λ
c < 1)

Let (Zt , t ≥ 0) be the extended process started from z ∈ (0,∞).

1) If 0 ≤ 2λ
c < 1 and Ψ(z) ≥ 0 for a certain z > 0 then

1-1) If
∫∞ du

Ψ(u) =∞, then Zt > 0 for all t ≥ 0 a.s. and Zt −→
t→∞

0
a.s.

1-2) If
∫∞ du

Ψ(u) <∞, then (Zt , t ≥ 0) is absorbed at 0 in a finite
time a.s..

E =∞ t t tt

Zt ZtZt Zt

∫∞ 1
Ψ <∞

E =∞∫∞ 1
Ψ =∞

0 ≤ 2λ
c < 1 0 ≤ 2λ

c < 1

E <∞∫∞ 1
Ψ <∞

E <∞∫∞ 1
Ψ =∞

Figure: Schematic representation of the two behaviors at 0
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Theorem (long-time behavior, 2λ
c ≥ 1)

2) If 2λ
c ≥ 1 and Ψ(z) < 0 for all z > 0 then (Zt , t ≥ 0) is

absorbed at ∞ in finite time a.s.

3) If 2λ
c ≥ 1 and Ψ(z) ≥ 0 for a certain z > 0 then

Pz(Zt −→
t→∞

0) = 1− Pz(ζ∞ <∞)

=

∫∞
0

e−zu

u exp
(
−
∫ u
θ

2Ψ(v)
cv dv

)
du∫∞

0
1
u exp

(
−
∫ u
θ

2Ψ(v)
cv dv

)
du

∈ (0, 1).

and Zt > 0 for all t ≥ 0 a.s. iff
∫∞ du

Ψ(u) =∞.
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Proofs: construction of the extensions
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A first duality result

Recall ex(z) = ez(x) = e−xz and Lex(z) = Aez(x) for x , z ∈ (0,∞).

Lemma (Laplace’s duality lemma)

Assume E =∞. ∀z ∈ [0,∞), ∀x ∈ (0,∞),

Ez [e−xZ
min
t ] = Ex [e−zUt ].

Sketch of proof.

See Ethier and Kurtz (corollary 4.15 p196). Assume U and Zmin

independent, by the martingale problems for U and Zmin, using that Zmin

does not explode and that 0 is an exit for U, we get
d

ds
E
(
e−Ut−sZ

min
s
)

= E
(
LeUt−s (Z

min
s )−AeZmin

s
(Ut−s)

)
= 0.

Hence
E
(
e−Ut−sZ

min
s

)
= E

(
e−Utz

)
= E

(
e−xZ

min
t

)
.
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Theorem (Stationarity)

Assume Ψ of the form

Ψ(z) = −λ− δz −
∫ ∞

0
(1− e−zu)π(du)

with λ ≥ 0, δ ≥ 0 and
∫∞

0 (1 ∧ u)π(du) <∞. Assume 0 ≤ 2λ
c < 1

and define the condition

(A) : (δ = 0 and π̄(0) + λ ≤ c/2).

- If (A) holds then (Zt , t ≥ 0) converges in probab. to 0.

- If (A) is not satisfied then (Zt , t ≥ 0) converges in law
towards the distribution carried over ( 2δ

c ,∞) whose Laplace
transform is

x ∈ R+ 7→ E[e−xZ∞ ] :=

∫∞
x exp

(∫ y
θ

2Ψ(z)
cz dz

)
dy∫∞

0 exp
(∫ y

θ
2Ψ(z)
cz dz

)
dy
.
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Infinity as an Entrance Boundary: sketch of proof

Recall

Ez [e−xZ
min
t ] = Ex [e−zUt ].

Set Ptex(z) := Ez [e−xZ
min
t ] for z ∈ [0,∞[ and

Ptex(∞) := lim
z→∞

Ez [e−xZ
min
t ] = Px(Ut = 0).

Since E =∞, 0 is an exit of U and Px(Ut = 0) > 0.

x 7→ Px(Ut = 0) = Px(τ0 ≤ t) is the Laplace transform of a
probability entrance law ηt , i.e. for any t > 0 and s ≥ 0

ηt+s = ηtPs

and (Pt , t ≥ 0) is a Feller semigroup on [0,∞].



Introduction Logistic CSBPs Sketch of proofs Hitting times, local time and excursion measure References

Let (Zt , t ≥ 0) be a Feller process with semigroup (Pt , t ≥ 0).
By definition: for any z ∈ [0,∞):

Ez [e−xZt ] = Ex [e−zUt ]

and
E∞[e−xZt ] = Ex [e−∞·Ut ] = Px(Ut = 0).

Hence it has ∞ as entrance boundary.

P∞(Zt <∞) = lim
x→0+

E∞(e−xZt )

= lim
x→0+

Px(Ut = 0)

= P0+(Ut = 0) = 1.

Hence ∞ is instantaneous.
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Infinity as regular reflecting boundary: sketch of proof.

Assume E <∞ and 2λ
c < 1. Set U

(k)
t the Ψk -generalized Feller

diffusion and Z (k) the LCSBP(Ψk , c): Z (k) does not explode and
by the previous result has ∞ entrance and

Ez [e−xZ
(k)
t ] = Ex [e−zU

(k)
t ]

where U(k) has 0 exit.

For all x , Ψk+1(x) ≤ Ψk(x) so by the comparison theorem:

U
(k+1)
t ≥ U

(k)
t for all t a.s. and U

(k)
t → U

(∞)
t as k →∞.

x

τ (k) τ (k+1) τ∞

U(k)

U(k+1)

U(∞)

0 is an exit for each U (k)
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Since ||A(k)f −Af ||∞ → 0 for any f ∈ C 2
c ,

(U
(∞)
t , t ≤ τ∞)

law
= the minimal diffusion with generator A

τ∞ := inf{t;U
(∞)
t = 0} and Px(τ∞ <∞) > 0 since 2λ

c < 1.

Since τ∞ ≥ τ (k) and 0 is an exit of (U
(k)
t , t ≥ 0), on

{τ∞ <∞}
U

(∞)
t+τ∞ = limU

(k)
t+τ∞ = 0.

Thus (U
(∞)
t , t ≥ 0) has 0 regular absorbing.

To sum up, when E <∞ and 2λ
c < 1

Ex [e−zU
(k)
t ] −→

k→∞
Ex [e−zU

a
t ]

where (Ua
t , t ≥ 0) is the Ψ-generalized Feller diffusion with 0

regular absorbing.
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Let (P
(k)
t , t ≥ 0) the semi-group of (Z

(k)
t , t ≥ 0). Set

Ptex(z) := lim
k→∞

P
(k)
t ex(z) = Ex [e−zU

a
t ].

Stone-Weierstrass entails that PtCb ⊂ Cb, where
Cb := C ([0,∞],R). One has

||P(k)
t ex − Ptex ||∞ = sup

z∈[0,∞]

(
Ex [e−zU

(k)
t ]− Ex [e−zU

a
t ]
)
−→
k→∞

0

Stone-Weierstrass again entails ||P(k)
t f − Pt f ||∞ −→ 0 for any

f ∈ Cb and

(Pt , t ≥ 0) is a semigroup with the Feller property.

Unif. conv. of semigroups implies convergence in D
(Ethier-Kurtz (Thm 2.5 p167)), thus:

(Z
(k)
t , t ≥ 0) =⇒ (Zt , t ≥ 0)

Let (Zt , t ≥ 0) be the Markov process on [0,∞] with semigroup
(Pt , t ≥ 0). One has

Ez [e−xZt ] = Ex [e−zU
a
t ].
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It remains to show that Z is an extension of Zmin. One has for any
f ∈ C 2

c ,
||L(k)f − Lf ||∞ → 0 as k →∞

and thus (Zt∧ζ∞ , t ≥ 0) solves (MP). By well-posedness,

(Zt∧ζ∞ , t ≥ 0)
law
= (Zmin

t , t ≥ 0).

Conclusion: when E <∞ and 2λ
c < 1, ∞ is accessible and

E∞[e−xZt ] = Px(U0
t = 0) = Px(τ0 ≤ t) > 0

and ∞ is regular for Z . Moreover for any z ∈ [0,∞],

Pz(Zt <∞) = E0+[e−zU
0
t ] = 1

and ∞ is reflecting.
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Facts

What happens in the process past explosion is entirely
encoded in the law of the first hitting time of 0 of U .

We have so far not obtained precise information on the
first explosion time, the local time at ∞ and the excursion
measure. The construction given previously of the LCSBP
Z reflected at ∞ does not allow us to describe the latters.

In the remaining time, we now state some results in this
direction.
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In order to go further in the description of the reflected process Z ,
we will use a second duality relationship: for any x , y ∈ (0,∞) and
t ≥ 0,

Px(Ut < y) = Py (x < Vt), (3)

where the process (Vt , t ≥ 0) is the so-called Siegmund dual
diffusion of U.

Z
Laplace dual←→ U

Siegmund dual←→ V . (4)

By combining the two dualities one can check that for any t ≥ 0
and all z , x ∈ (0,∞),

Ez(e−xZt ) =

∫ ∞
0

ze−zyPy (Vt > x)dy . (5)
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Digression: Siegmund duality for one-dimensional diffusions

Theorem (Diffusions and Siegmund duality)

Let σ2 be a C 1 strictly positive function on (0,∞) and µ be a
continuous function on (0,∞). Let (Ut , t ≥ 0) be a diffusion over
(0,∞) with generator

A f (x) := 1
2σ

2(x)f ′′(x) + µ(x)f ′(x)

such that ∞ is either inaccessible (entrance or natural) or
absorbing (exit or regular absorbing). Then for any 0 < u, v <∞
and any t ≥ 0

Pu(Ut < v) = Pv (Vt > u), (6)

with (Vt , t ≥ 0) the diffusion whose generator is

G f (x) :=
1

2
σ2(x)f ′′(x) +

(
1

2

d

dx
σ2(x)− µ(x)

)
f ′(x). (7)
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Let SU and MU be the scale function and the speed measure of U.
Up to some irrelevant multiplicative constants, we have the
equalities

SU = MV ,MU = SV .

The following correspondences for boundaries and longterm
behaviors of U and V hold:

U V

0 exit 0 entrance

0 regular absorbing 0 regular reflecting

0 entrance 0 exit

∞ exit ∞ entrance

∞ & 0 attracting positive recurrence

Table: Boundaries of U,V .
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Proposition

The Siegmund dual of (Ut , t ≥ 0) is the diffusion (Vt , t ≥ 0)
solution to an SDE of the form

dVt =
√
cVtdBt +

(
c/2 + Ψ(Vt)

)
dt, V0 = y ∈ (0,∞), (8)

where (Bt , t ≥ 0) is some Brownian motion and whose boundary
condition at 0 and ∞ are given in correspondence with that of U
in the following way:

Integral condition Boundary of U Boundary of V

E =∞ 0 exit 0 entrance

E <∞ & 2λ/c < 1 0 regular absorbing 0 regular reflecting

2λ/c ≥ 1 0 entrance 0 exit∫∞ dx
Ψ(x) =∞ ∞ natural ∞ natural∫∞ dx
Ψ(x) <∞ ∞ entrance ∞ exit
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Gathering the correspondences displayed in previous tables, we
obtain the following ones between V and Z . Notice that the
boundaries 0 and ∞ are exchanged but the behaviors of the
processes are not anymore.

Boundary of V Boundary of Z

0 entrance ∞ entrance

0 regular reflecting ∞ regular reflecting

0 exit ∞ exit

∞ natural 0 natural

∞ exit 0 exit

Table: Boundaries of V ,Z .
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Denote by Ty the first hitting time of y ∈ [0,∞] of the diffusion
(Vt , t ≥ 0) and set G its generator:

G f (x) :=
c

2
xf ′′(x) +

(c
2

+ Ψ(x)
)
f ′(x). (9)

Then, from the general theory of one-dimensional diffusions, the
Laplace transform of Ty is expressed, for any θ > 0, as

Ex [e−θTy ] =


h+
θ (x)

h+
θ (y)

, x ≤ y

h−θ (x)

h−θ (y)
, x ≥ y ,

(10)

and functions h−θ and h+
θ are C 2 and respectively decreasing and

increasing solutions to the equation

G h(x) :=
c

2
xh′′(x)+

(c
2

+ Ψ(x)
)
h′(x) = θh(x), for all x ∈ (0,∞).

(11)
with appropriate boundary conditions at non natural boundary
points.
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Denote by ez an exponential random variable independent of V
with parameter z , and by T ez

y the first hitting time of point y by
the diffusion V started from ez .

Theorem (Laplace transform of the extinction time of LCSBPs)

For any 0 < z <∞ and θ > 0,

Ez [e−θζ0 ] =

∫ ∞
0

ze−zx
h+
θ (x)

h+
θ (∞)

dx = E[e−θT
ez∞ ] ∈ [0,∞) (12)

In particular, if ∞ is not absorbing for Z (i.e. if 2λ/c < 1) then

E∞[e−θζ0 ] = E0[e−θT∞ ] ∈ (0,∞).
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Theorem (Laplace transform of the first explosion time of LCSBPs)

Ez [e−θζ∞ ] =

∫ ∞
0

ze−zx
h−θ (x)

h−θ (0)
dx = E[e−θT

ez
0 ] ∈ [0,∞).

Theorem (Local time)

Assume ∞ regular reflecting (E <∞ & 2λ/c < 1),

1 the local time at ∞ of Z , (LZt , t ≥ 0) has the same law as the
local time of V at 0, (LVt , t ≥ 0), for a certain deterministic
multiplicative factor.

2 the Laplace exponent of the inverse local time subordinator
(τZx , 0 ≤ x < ξ) is κZ : θ 7→ 1/h−θ (0).

3 In addition,
κZ (0) = 1/SZ (0)

with SZ (0) :=
∫∞

0
1
c
dx
x e
−

∫ x
x0

2Ψ(y)
cy

dy ∈ (0,∞],
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Corollary

Assume E <∞ & 2λ
c < 1, set I := {t > 0 : Zt =∞},

dimH(I) = 2λ/c ∈ [0, 1) a.s.

Example

1 A specific example is given by the case Ψ ≡ −λ with λ > 0.
In this setting, the diffusion V is solution to the SDE

dVt =
√
cVtdBt + (c/2− λ)dt.

Therefore, V is a squared Bessel diffusion with non-negative
dimension and the inverse local time at 0 of V is a stable
subordinator with index 2λ/c

2 If Ψ(x) ∼
x→0+

−α/ log(1/x). One has E <∞ and by the

corollary , dimH(I) = 0 a.s..
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Theorem (Excursion measure)

Assume ∞ regular reflecting (E <∞ & 2λ/c < 1). For any
x ∈ [0,∞) and q > 0,

nZ

(∫ ζ

0
e−que−xε(u)du

)
= nV

(∫ `

0
e−qu1(x ,∞)(ω(u))du

)
. (13)

Moreover,

nZ

(∫ ζ

0
e−xε(u)du

)
=

∫ ∞
x

e
∫ y
x0

2Ψ(u)
cu

du
dy ∈ (0,∞]. (14)
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Theorem

Assume ∞ regular reflecting (E <∞ & 2λ/c < 1) and that −Ψ is
not the Laplace exponent of a subordinator. Denote by I the
infimum of an excursion of Z . Its law under nZ is given by

nZ (I ≤ a) = 1/SZ (a),

with SZ (a) :=
∫∞

0
1
c
dx
x e−axe

−
∫ x
x0

2Ψ(u)
cu

du
for all a ≥ 0.
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Conclusion of the short course

We have seen two different uses of stochastic duality with respect
to a function:

Ex [H(Xt , y)] = Ey [H(x ,Yt)]

In the first two talks, we have investigated the flow of CSBPs
X and its Siegmund dual Y := X̂ , the dual function was

H(x , y) = 1{x≤y}.

The duality was made pathwise by the use of Bertoin-Le Gall’s
flow; and related to the genealogy backwards in time.
In the last talk; we have used first a duality relationship with
X = Z , the LCSBP, Y = U the Ψ-generalized Feller diffusion
with function

H(z , x) = e−xz

for studying the LCSBP and its recurrent extensions of the
process past explosion as well as its long-term behavior. We
then use a second dual process V , Siegmund dual of U, for
studying deeper the process.



Introduction Logistic CSBPs Sketch of proofs Hitting times, local time and excursion measure References

Thank you for your attention
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